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ABSTRACT

Continuum is a software platform for collaborative virtual environments. Continuum’s

architecture supplies a world model and defines how to combine object state, behavior code,

and resource data into this single shared structure. The system frees distributed users from

the constraints of monolithic centralized virtual world architectures and instead allows in-

dividual users to extend and evolve the virtual world by creating and controlling their own

individual pieces of the larger world model. The architecture provides support for data distri-

bution, code management, resource management, and rapid deployment through standard-

ized viewers. This work not only provides this architecture, but it includes a proven imple-

mentation and the associated development tools to allow for creation of these worlds.
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1 Introduction

1.1 Motivation

Futurist and science-fiction writers have long envisioned shared virtual worlds — places

where millions of people enter a shared alternate reality with no physical matter or con-

straints. Participants would be able to meet, socialize, and work in a completely virtual world

that only exists in the collaborating minds of the computers controlling it. Many of the more

idealistic visionaries look to this virtual world as a cyber utopia; a place without borders,

without strife, without limits. This new cyber world could be shaped as the inhabitants see

fit with the only limits being the imagination of its creators.

These ideas have inspired and intrigued computer researchers, developers, hackers, and

users since they first started to emerge. But the goal of shared virtual worlds, while a tanta-

lizing dream, has always seemed to be unattainable. Much like a mirage, always just out of

reach but so very enticing.

Fortunately with recent technological advances, including plentiful processing power and

abundant network resources, this mirage has started to come into clearer focus. We have

arrived at a point in time where the pursuit of shared virtual worlds is not an impossible

dream, but instead is a feasible reality.

There are currently several efforts working on systems to allow groups of remote users

to share a virtual world. These systems are called collaborative virtual environments (CVEs).

CVEs are a combination of hardware and software that present users with a computer gen-

erated representation of a shared virtual world. A virtual world provides the description of

the physical and behavioral characteristics of the space being presented. It may define any

imaginable environment from a simulated manufacturing process to a scientific visualization
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or the latest game.

CVEs enable multiple users to socialize and interact within a shared virtual space. They

give all users a sense of shared presence; a sense of being “in” an application and feeling

that they are all together in the same space. Users are not just passive observers or indirect

controllers, instead applications are designed to engage users and provide them with a sense

of personal involvement as if they are part of the virtual space.

CVE applications open up a wide range of possibilities for many application domains.

Users from around the world can come together to collaborate in a shared space gaining new

insight into problems, evaluating new products, and even engaging in entertainment. CVEs

have been used for scientific visualization, manufacturing, entertainment, and nearly every

other domain where standard VE technology is currently being applied [Eve, Ult, Lab, Har01,

SZ99].

Consider an example where an international engineering company wants to use a CVE to

review a new product design. Engineers from offices in Chicago, London, and Tokyo need

to discuss the design the same way they would if they were all meeting together in the same

room with a physical prototype of the design. But instead of using a physical object they are

using a virtual environment and instead of being in the same room they are all collaborating

in a CVE. The CVE allows engineers from every location to be simultaneously in the envi-

ronment reviewing the virtual design without having to spend the time or money to build a

physical object and travel to the same location.

CVE systems are usually implemented using real-time interactive software applications

that produce a fully synthetic computer generated representation of a shared virtual world.

Normally this representation is multi-sensory including three-dimensional graphics and high-

fidelity sounds. The software is connected over a network to a set of remote user applications.

It is responsible for exchanging data with all the distributed users to support collaborative

interaction and maintain a consistent view of the shared virtual world. Because of their sim-

ilarity to standard virtual environment (VE) applications 1 many CVE systems build upon

1In the context of this document, we refer to VE software systems as presenting only a local virtual world.
They do not have support for sharing the environment with other users.
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existing VE architectures.

Current implementations can effectively support hundreds and sometimes thousands of

collaborating users. Going forward though we see the need to support much larger CVEs

where there may be hundreds of thousands of users. These environments are called large

scale collaborative virtual environments (LSCVEs) and have an additional set of requirement

due to their immense complexity.

The leading adopters of LSCVE technology are currently the game development commu-

nity. They have been successfully using LSCVE technology for several years to create mas-

sively multi-player on-line games (MMPOGs) that allow thousands of players to inhabit and

interact within the same gaming world [Ult, Lin, Eve, Lab]. The popularity of these games

has led many game companies to start developing games with collaborative features. This

wide-spread development and deployment has thus become a major driving force of current

LSCVE research.

Although CVEs are currently being used with success, there are still areas that need to be

improved upon. One such area is virtual world extension. Most existing CVE applications

are constrained to one specific predefined application and associated virtual world. These

systems do not allow individual users to extend the virtual world by adding new content,

instead extension is restricted to a single centralized authority that controls the entire virtual

world.

A more intriguing view of the future of CVEs is one where the end users actively con-

tribute and control content in the shared virtual worlds. Users could add new geometric

information about how some item looks in the environment or add new code for controlling

a shared object or a section of the environment. But how can this type of shared control be al-

lowed in a CVE? This research sets out to address this question by examining the fundamental

questions of virtual world extensibility.

Evolvable extension We believe that to allow the extension of virtual worlds, CVEs need

to support evolvable extension. CVEs supporting evolvable extension allow users to add to and

extend the environment. The virtual world is not restricted to only what the application



www.manaraa.com

4

vendor originally put in, but evolves to the requirements and directions of the users.

As an example, consider a virtual city within a CVE. Like most real world cities this virtual

city has a central district with areas for socializing with friends and meeting new people. This

district is full of entertainment attractions such as movie theaters, music clubs, cafes, and

general outdoor meeting areas. There are also stores and vendors selling their latest wares

ranging from the latest real-world fashion or music to virtual accessories that can only be

used within the virtual world.

In the menagerie of users and uses that make up such an environment, it is actually the

users of the environment that determine how the virtual world is structured and how it func-

tions. The users need the ability to add to the environment itself and extend it as needed.

Whether it is shop owners refining the virtual representation of their shops to attract more

customers, a street performer tweaking the flaming torches she is juggling to make them look

and behave just a bit more dangerous, or city officials creating a central park for strolling. In

each case, the environment as a whole is composed not of one single application but many

separate “mini-applications” and environments that, when put together, form the actual city

center.

If this environment sounds similar to environments portrayed in popular science fiction

such as the Metaverse[Ste92] or the Matrix[WW99], it is not just by chance. Although these

fictional environments represent a much more far reaching culmination of LSCVEs, they are

related to modern systems. It is doubtful that the progeny of today’s LSCVEs will be exactly

what science fiction currently portrays, but the end goal possesses many of the same features.

We do not know how the evolution of LSCVEs will end, we can only explore how it will

begin. For now we will pull back the dream world and start addressing the challenges of the

real world. By addressing the technical challenges of today’s LSCVEs we can begin taking the

first steps toward a future where they are a reality instead of a work of fiction.
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1.2 Research Goal

The goal of this research is to design a software architecture for supporting LSCVEs where

all users can extend and control the shared virtual world.

The time is right for creating architectures for LSCVEs. Only recently have the required

technologies reached a level of maturity and capability that allows the creation of such a

system to be more then a fanciful endeavor. The abilities of networking, graphics cards, and

CPU processing power have aligned themselves in such a way to make such systems feasible.

Combine these hardware capabilities with the advent of software technologies such as secure

component-based software and peer-to-peer networking and it is clear that we have reached

a new level of capabilities. We can now take the first steps toward world-wide collaborative

virtual environments. The question now is not when will we have the capabilities needed,

but is instead how will we use the capabilities that exist to make these systems a reality.

1.3 Challenges

Creating CVE software systems presents a number of difficult challenges. Many of these

challenges are a consequence of the intrinsic complexity and scale of allowing for a large

number of users simultaneously accessing and sharing the same virtual world. These users

have a wide range of hardware with vastly different computational power, networking re-

sources, and interaction capabilities. In addition to hardware issues, there are the software

issues inherent in developing complex distributed algorithms. These algorithms operate over

a network and must handle resource constraints, communication failures, and unexpected

disconnections.

There are also social and behavioral challenges that need to be addressed. These include

usability issues such as how users collaboratively interact with each other and how they find

their way through the virtual worlds. There are also issues related to why a person wants to

be in a CVE and how they behave in a virtual world.

Although these are all important issues that must be addressed, this research only focuses
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on the software issues and more specifically on the design of software architectures to sup-

port CVEs. These include issues such as how to represent the shared virtual world, support

distributed interaction, scale to large numbers of users, share the state of the virtual world,

and develop applications.

The challenges of CVE software have been addressed to the point that CVEs can be used

today. However, there are still unsolved challenges that prevent CVEs from being used to

their full potential.

1.3.1 Lack of a common model of the virtual world

There is little or no support for reusability or compatibility between CVEs. Because each

CVE that is developed represents the world in a different way there is no common method

for sharing object data and application code between CVEs. The CVE resources are instead

restricted to the CVE for which they were developed.

1.3.2 Virtual worlds are not user extensible

Most current CVE systems rely upon each user running exactly the same application with

centrally controlled code and content. This setup does not allow for virtual worlds that are

composed of the collective contributions of the users. Instead, the users are restricted to a

passive and static world that is not under their control. This can support basic collaboration,

but it does not allow for the amount of user control that is needed to build virtual communi-

ties. To allow this degree of flexibility, the system needs to support full user extensibility —

what we have called evolvable extension.

1.3.3 Deployment is difficult

Deploying CVEs is currently difficult and error-prone. Users have to download the ap-

plication executable and all associated data files. If there is a change to the application or

supporting data to fix a bug or add a feature, then the user has to download this update. This

manual process leads to problems where users may not be running the most recent version of
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the application or do not have the most recent version of the static data that the application

uses. Because of the amount of manual interaction required the opportunity is very high for

mistakes and incompatibilities that cause the client application to run unsuccessfully.

1.3.4 Application development is burdensome

It is currently a major undertaking to create a CVE application. Developers have to con-

tend with all of the development issues described earlier and many times they do not have

CVE-related tools to help them with development. Before CVEs can be widely developed

and deployed system designers need to provide better tools for supporting application and

content creation.

1.3.5 Limited number of users

Most current CVE architectures limit the number of simultaneous users. These limits exist

because as the number of users increases the amount of supporting resources needed also

increases until they reach the limits of the supporting architecture. Until scalable solutions

exist that can adaptively balance the resource constraints in the system, CVEs will remain

limited to a relatively small numbers of active shared users.

1.4 Problem Statement

The goal of this research is to develop a software architecture and an associated unified

world model for large-scale collaborative virtual environments. The world model will com-

bine code, behavior, and data into a single common structure that is user extensible. The

contributions of this research are:

• The design of a unified world model for CVE applications

The world model in this research is unique because it allows code, behavior, and data to

be combined into a single structure. There have been previous attempts to do this, but

each of these methods has limitations that need to be overcome.
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• The ability for CVEs to be composed of and extended by user contributions

The world model in this research supports user extensibility. Users provide and control

the content and behavior of the virtual world.

The research methodology used by this project is one of exploration through implementa-

tion and iteration. We will verify our ideas by evaluating prototype implementations. The

evaluation will use test-case applications designed to mirror real-world requirements.

Through the experimentation of this research there were several concrete deliverables.

These include:

• Unified world model

• Network communication system

• Client viewer for participating in the CVE

• Common software tools and components for supporting application development

1.5 Research Issues

An architecture that addresses this research problem must unravel several interrelated

research issues. In this section we provide a high-level overview of each of these research

issues. In later sections we will describe in detail the methods used to address each of these

issues within the scope of this work.

1.5.1 Unified world model

The primary research issue to be addressed is how to represent the virtual world for a

CVE. This representation defines how applications view the virtual world structure and how

state is shared between user applications. Most CVE systems implement a shared data struc-

ture for capturing this representation. We call this representation of a virtual world and its

associated implementation the world model.
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Previous efforts use a wide variety of methods to represent this structure. Several systems

extend scene graph data structures with non-graphical application information [FS98, Mas].

A number of other systems use data structures that facilitate distributed shared memory or

potentially distributed objects [Pet99, PCMW00]. Some systems are not meant to be used

for in memory representation, but are only used to specify the structure of the virtual world

[VRM97a, Liv03].

The world model proposed in this research extends the standard idea of a world model by

representing a virtual world as a hierarchical composition of entities and related code com-

ponents. The entities store the state of all objects in the virtual world. The associated code

components control how the entities respond to interaction and behave within the virtual

world. The hierarchical structure of the world model defines the authority and spatial rela-

tionships of the entities. This structure forms the backbone of the virtual world and provides

a unified world model that allows application code from many different sources to inter-operate

within a single environment.

Entities provide a common basis for capturing shared data in the virtual world. Each

entity represents a physical object or space in the virtual world by holding a set of properties

that fully define the state of the object they are representing. These properties may be intrinsic

characteristics of the entity (like the color of a ball) or they may be application-specific data

that is added to store information needed for a custom algorithm. Additionally, each entity

has associated metadata2 that describes its current properties. This metadata allows run-time

application code to interrogate an entity’s properties, add new application specific properties,

and discover new entity types all at run-time.

We will refer to the code components in the world model as codelets. The codelets can be

thought of as mini-applications that control entities in the virtual world. For example there

could be codelet attached to a fountain model that controls a water particle system. Codelet

may also control sub-regions of a virtual world. For example a virtual room may have all of

its physics controlled by a single codelet associated with its containing entity.

2Metadata is data that describes other data[FY98]. This is a machine readable description that allows applica-
tion codes to operate on new data without having to know the exact layout of makeup of the data a priori.
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A unique aspect of this architecture is that codelets in the world model can be contributed

by any user of the environment. Since any user can contribute to the environment, it is effec-

tively running many user “applications” simultaneously to create the shared environment.

There are obvious security concerns in any system that allows user supplied code to be exe-

cuted. In later sections we will discuss the security details of codelets.

1.5.2 Data distribution

Another research issue that must be addressed is how to design a data distribution system

that effectively shares the current state of the shared virtual world among multiple users. As

described in the previous section, the world model is composed of many entities which each

hold a portion of the data representing the shared virtual world. Thus for the virtual world

to be shared, each of these entities has to be distributed to all the users in the environment.

Distributing the world model data is a difficult problem to solve efficiently. CVE system

developers must choose between updating the data with very low latency while consuming

an enormous amount of networking resources or delaying the data updates at the expense

of increased latency. At the same time the data consistency strategy must guarantee that all

users in the shared virtual world share synchronized data values.

Even minor problems with the data distribution implementation can lead to many un-

wanted artifacts within the system. Faulty data distribution can lead to invalid or corrupt

data. Even if the system delivers the correct data, if the data is not distributed quickly enough

users will perceive lag within the system. In extreme cases this lag can render the system

useless by preventing interaction. These types of problems are beyond the control of the ap-

plication developer and must be solved by the CVE architecture designers in a reusable data

distribution system. This system can then be used by application developers and will ensure

correct data distribution behavior.

The data distribution system is responsible for:

• Holding entity state information

• Distributing entity state updates to all CVE users
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• Controlling access to entities

• Synchronizing access to entities

Another aspect that is commonly managed by the data distribution method is data persis-

tence. When the CVE is unloaded or some sub-component of the CVE is stopped, the state

of each affected entity within the CVE needs to be stored so that it can be loaded later when

needed.

1.5.3 Code management

Another research issue is how to manage the many codelets that are part of the virtual

world. As described earlier, the world model associates application codelets directly with

entities in the world model. This allows the world model to specify how the codelets should

relate to the rest of the world, but it does not define how they should be managed. A separate

management system is needed to handle the codelet execution, coordination, and security.

We propose that codelets can be effectively managed using a component system. Com-

ponent systems allow applications to be created by combining modularized units of code

(called components) into a larger application [SGM02]. In our case the software components

correspond directly to codelets. The use of a component system helps to solve or at least as-

sist with many of the basic code management issues. For example many component models

[SGM02, Rog97, Box97, Pri99, Ham96, MS01, HV99, Obj02] support the concepts of execu-

tion, dependency management, building, versioning, and package signing. There are several

extended features that are needed for a component system for CVEs.

One desirable feature is multi-language bindings. These allow developers to use multiple

languages for developing and using components. For example we may want to have an appli-

cation that implements the low-level graphics rendering in C++ but has the interaction code

written in a high-level scripting language like Python. By allowing higher level scripting lan-

guages to be used we may be able to reduce the complexity of application development. An

added benefit of multi-language bindings is that developers can use virtual machine based
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languages like Java [AG98] and C# [ECM02] to allow direct migration of compiled applica-

tions across platforms with minimal effort.

Component security is also a requirement for a CVE component system. When developing

applications that are composed of components downloaded from remote locations, security

becomes a major concern. There is always a risk that downloaded components may contain

malicious code designed to harm a local system. Some component systems have support for

security, but we believe this is one area where additional extensions may need to be added to

handle the requirements of CVEs.

An important and highly unique requirement for LSCVE is support for continuous exe-

cution. When administrators or users upgrade or extend a LSCVE it may not be possible to

take down the entire system. Instead system components need to allow upgrade and mainte-

nance while they are executing. This is not supported by any component system we currently

know of, but is the topic of several active research efforts [Wat98, WZ98, OCS00, BZWM97].

Unfortunately there is no current component system that solves all the technical issues that

we need for creating CVEs.

1.5.4 Resource management

A crucial research issue is how to manage the resources required by virtual worlds. The

world models of LSCVEs depend upon many different resources ranging from geometric

model files that specify how objects appear to code components that define how objects be-

have and interact. We use the generic term resource to refer to any static item or component

that a world model requires. For example the world model from the virtual city example may

require a model resource that defines how a building looks, a code resource that implements

a fountain in the city park, and a sound resource that contains music being played in a club.

The resource management strategy is part of the underlying software used to support the

world model. The responsibilities of this system include:

• Resource retrieval
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When an application depends upon a resource, it needs a way to find and retrieve the

resource. To support this functionality, resources need to be identified and indexed so

they can be located. The system also needs to provide a method for retrieving the data

from the remote nodes that have the requested resource.

• Version management

Just as in real life, the virtual world does not remain static. It changes over time. Re-

sources used by a CVE will most likely change over time. For example the model file

describing the park in our virtual city example may be updated many times to add more

detail or to change the feel of the environment. These changes need to be reflected in

the resources to allow the system to request specific versions or just the most recent

revision.

• Authentication

When the resource manager retrieves a resource it needs a way to verify the resource is

authentic. This includes verifying that the resource was created by the correct user and

that it has not been altered from the original version.

1.5.5 Space sharing rules

One of the most challenging research issues addressed by this work is creating methods

to resolve conflicts when applications overlap in space or behavior. Because the world model

allows virtual worlds to be composed of contributions from multiple users there are effec-

tively multiple applications running simultaneously inside the environment. In a CVE where

multiple applications are running, there are going to be places where applications "overlap"

in space. These overlaps lead to conflicts were the overlapping applications disagree about

how that area of the virtual world should be presented and which codelets are in control. The

CVE system needs to provide a method to resolve these conflicts in an orderly and fair way.

For example consider again the case of the virtual city. Imagine that within the city there

is a building owner. The city administrators have granted the building owner the rights to
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control an area of the city where they can put their own building and associated application

code. The building owner specifies the layout of the space, the geometry used to represent it,

and the interaction code that will execute within the space. But what happens if the owners

specifies a model that is larger then the allocated space? Correspondingly, what if the owner

defines a different gravity constant for the space inside the building (like zero gravity) but the

city managers have specified that gravity should remain consistent across the entire city? In

both of these cases there is a conflict between pieces of code sharing space within the virtual

world.

Resolving these conflicts effectively must be done if we are to allow all users to extend

and evolve the virtual world. Without conflict resolution there would be no way to prevent

adversarial users from usurping control of areas that are rightfully under the control of other

users. In effect if conflict resolution rules are not in place it becomes impossible to support

shared control of a virtual world effectively.

1.5.6 Development tools

It is not enough to have a CVE architecture that addresses only the previously mentioned

technical issues. If developers do not have the tools they need to create applications, the

architecture will be of no use. Because of this we do not limit our focus to creating only a

CVE architecture. Instead we believe that supporting developers with tools for creating and

extending virtual worlds is another crucial research issue.

Unfortunately, CVE application development has traditionally been notoriously difficult.

One reason for this is developers have to manage the complexities of all the technical issues

described previously including real-time graphics, distributed algorithms, and human com-

puter interaction. This complexity reduces developer productivity by requiring them to han-

dle the low-level architectural details instead of focusing on the development task at hand:

creating an application. Complexity further hinders development by making it difficult to

find developers that possess all the skills used developing CVE application. For this reason

fewer applications are developed and many that are developed do not take advantage of the
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full potential of the CVE system.

We believe that it should be the responsibility of the CVE architecture designers to provide

development tools that assist application developers in creating applications. As part of our

CVE research we will analyze the needs of application developers and design development

tools to help meet those needs. It is our hope that these tools will assist application developers

in creating new applications and will lead to higher adoption rates for the CVE architecture

produced.

1.6 Contributions and results

This research describes an architecture for a unified world model that supports user ex-

tension. The world model combines code, behavior, and data into a shared structure that is

user extensible. The architecture provides support for data distribution, code management,

resource management, and rapid deployment through standardized viewers. The system is

based on a layer architecture composed of networking, data sharing, a world model, and

viewers.

1.7 Dissertation Overview

This dissertation is organized as follows:

Chapter 2 provides an overview of the virtual environment, networking, and collaborative

virtual environment technologies that the rest of the work builds upon. This section does not

go into explicit detail about every nuance of these technologies, instead it is meant to provide

a broad overview to give the reader a foundation for the discussions in the remaining sections

of this document.

Chapter 3 reviews previous work in related areas. It starts out by describing the details

of several previous architectures for CVEs and discusses the relationships between then. The

section then discusses more peripherally related systems that have interesting aspect that

relate to the issues addressed in this work.
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Chapters 4-7 describes the architecture of Continuum and the various layers that make up

the system.

Chapter 8 discusses the conclusions that can be made from this work and future work that

could follow on this research.
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2 Background

Collaborative Virtual Environment (CVE) software systems build upon many different

fields including computer graphics, computer algorithms, software engineering, human com-

puter interaction, simulation, and networking. These fields cover the technologies needed for

defining the virtual world, simulating the elements within it, distributing the virtual world to

all users, presenting it to each user, and facilitating user interaction.

In this chapter we present background material covering some of the details of these tech-

nologies. Because it is beyond the scope of this document to cover the details of all the tech-

nologies used for CVEs, we limit the background material to those aspects that are unique

to CVEs. There are many excellent references that describe the technologies that CVEs have

in common with other software systems including virtual environments[Stu96, Vin95], vi-

sual simulation[WW92, Fol90, Wat93, Bou02, Mol99], and game development [Ebe01, DeL00,

DeL01, Tre02, Bou02]. We highly recommend examining these references for a more complete

description of background technologies used in developing CVEs.

We begin this chapter with an overview of networking, we then describe the fundamental

characteristics of a CVE, and we end the chapter with a detailed description of many of the

issues involved in developing CVE systems.

2.1 Networking Overview

Because CVEs use a network to share information between users, many of the topics in

this document involve the subject of networking. Throughout this document we will use

the generic term network to refer to the variety of transmission media, hardware devices, and

software components that make up a computer network. Strictly defined, a computer net-
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work is an interconnected collection of autonomous computers [Tan96]. Our more generic

definition of network encompasses the transmission media, including wire, cable, and wire-

less channels; the hardware devices, including routers, switches, and hubs; and the software

components, including protocol stacks, communication handlers, and drivers. Computers or

devices that use the network for communication are called hosts. Additionally, any connection

or routing point within the network such as a computer or switch is called a node[CDK01].

To simplify our discussions, we will ignore the specific details of the networking hardware

used (unless otherwise noted) and instead focus on a model of the network as a communica-

tion system. Within this model the network is a medium that allows hosts to communicate

with each other by exchanging data in the form of messages. Although this model ignores

some of the hardware level details such as switching and packet assembly, it provides a level

of abstraction that is appropriate for our discussions.

There are several fundamental characteristics of network communication that affect dis-

tributed communication. The first of these that we will discuss is network performance.

2.1.1 Network performance

Network performance is a key issue for any distributed algorithm because they are con-

strained by the performance limitations of the network. Network performance limitations are

such an important issue, that the complexity in many distributed algorithms is introduced

primarily by techniques deal with these limits.

The primary performance characteristics of a network are latency, bandwidth, and jitter

[CDK01].

• The delay from the sending of a message on one host to the receiving of the message by

another host is called latency. Latency can be measured by sending an empty message

between two hosts. Latency measurements include the following time measurements:

– Network transmission time: This is the time taken for the first bit of data transmit-

ted across the physical network to reach the destination.
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– Network access time: This is the delay introduced in accessing the physical net-

work. This delay includes access time at both the sending and receiving hosts.

An example of this is the time spent waiting for an Ethernet line to be available

for communication. Because access time increases as more nodes try to access the

same shared network resources, network access time can increase significantly dur-

ing periods of high network traffic.

– Processing time: This is the time taken by the operating system and associated

communication software to process the message at both the sending and receiving

end. This processing includes tasks such as adding headers to the data, segment-

ing data packets on the sending side, and applying the opposite behavior on the

receiving end. The receiving end may also buffer the received data which can add

further delay to the processing time. In some cases, the processing delay also in-

cludes application processing time. In such cases, we will explicitly state that this

delay is being considered as part of latency.

• The network bandwidth is the aggregate amount of data that can be transmitted across

a network connection during a given time period. Network bandwidth is shared by all

communication channels that are using a given part of the network.

• Jitter is a measure of the variation of the transfer times of a sequence of message trans-

fers. Jitter can either refer to the latency of the messages or to the total transfer time of

the messages. Unless otherwise noted, we will use jitter to refer to the variation of the

total transfer times.

The bandwidth and latency of a network channel determine the total time taken to transfer a

piece of data between two hosts. Assuming constant bandwidth during a transmission, the

total time to transfer a message of size length can be computed as:

Message trans f er time = latency +
length

bandwidth

From this definition it can be seen that any increase in latency or decrease in bandwidth

can dramatically increase the time needed to complete a message transfer. It can also be seen
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that no matter how little data is transferred or how high bandwidth the connection, there

is at least latency delay in any message transfer. Because latency incorporates delays tied

to physical transmission, there is no way to completely eliminate it. We will discuss this

more later but it should be noted here that the inability to remove network latency is the key

restriction for CVE communication.

2.1.2 Network reliability

In addition to performance limits, developers must also account for issues of network

reliability. The reliability of network communication is not guaranteed. Network transmis-

sions can fail due to many reasons. A physical connection may go down. A data buffer in

the software system may overrun. Depending upon the network protocols being used, tran-

sient failures may be automatically corrected. If they are not automatically corrected, then

application developers need to write their software in a way that detects the error and keeps

functioning correctly. This may mean the software corrects the error through methods such as

retransmission, or it may mean that the software just ignores the erroneous message. Alterna-

tively, if the protocol being used guarantees error-free transfers, then the software developer

only needs to worry about more permanent error conditions such as network disconnections

and failures.

2.1.3 Communication architecture

The system architecture used by a set of distributed applications communicating over a

network is called a communication architecture. The communication architecture defines the

responsibilities of the individual communicating nodes in the system and determines how

the application is distributed within the system. The choice of communication architecture

used by a distributed system can dramatically impact the performance, scalability, reliability,

and complexity of a given system. Most network-based applications use one of two types of

communication architectures1: client-server or peer-to-peer.

1There many hybrid communication architectures that combine aspects of both of these methods, but for the
purposes of this discussion we will only discuss these two types. For a more complete description of communi-
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2.1.3.1 Client server architecture

The client-server architecture defines a communication relationship where a client appli-

cation communicates with a remote server system. The server system provides access to

services or resources that are either held locally on the server or are under the control of the

server. The client system communicates with the server to request access to the server’s ser-

vices and resources. It is then the server’s responsibility to fulfill the request and possibly

respond to the client with the result of the requested action [CDK01].

A common example of a client-server based system is the relationship between a web

browser and a web server. A web server manages the web pages for a site and is responsible

for processing all webpage requests for that site. When a user wants to visit the site they use a

web browser application which acts as a client. The web browser requests the web page from

the remote web server. The server then replies with the content of the requested page. When

the client receives this information it displays it for the user and waits for the user to request

another page.

2.1.3.2 Peer-to-Peer architecture

A peer-to-peer (P2P) architecture is one where all the connected hosts have similar roles,

communicating as peers with no distinction between client or server roles[CDK01]. Each peer

contains all the algorithms necessary to function in any peer role. Each peer is an equal par-

ticipant with no hosts providing specialized facilities or administration. Because there is no

distinction between peers and no host has unique abilities that the others lack, P2P networks

provide a fully decentralized system that can be very robust[Ora01].

There are many example of P2P networks in widespread use today. Some of the most well

known are file-sharing networks like Gnutella [Gnu03] and Freenet [Fre03] but these are just

a few of the systems in use. Usenet [SL98] and DNS [AL01] are examples of P2P systems

that have been in use since the early 1980’s. There are also numerous examples of hybrid

systems that are primarily P2P such as instant messaging and Napster [Ora01, Ada01]. These

cations architectures see [CDK01, SZ99].
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applications all benefit from a decentralized architecture that allows them to efficiently share

information directly between hosts.

2.1.4 Communication protocols

Data is communicated over a network using communication protocols. There are many

available communication protocols, but we will be focusing exclusively on the TCP/IP2 suite

of protocols[Ste98, Ste94, WS95]. We limit ourselves to discussing these protocols for two

reasons. First because they form the basis of the Internet, they are currently the most widely

used networking protocols. Second, they form the basis of the networking software used for

this research.

2.1.4.1 Transport protocol

The primary means of communication between two hosts on a network is by sending

messages from a sender to a receiver. Transmitting these messages is the responsibility of the

network transport protocol being used. TCP/IP supports two transport protocols: TCP3 and

UDP4. These transport protocols are in turn based upon the IP network protocol. It is the

responsibility of the IP to provide data delivery for the higher level transport protocols.

When an application process wants to send data to another host they must provide two

pieces of information: the message data and a destination address. The message data can be

any data that the process would like to communicate. The destination address is an identifier

that tells the network protocols where to deliver the message data. The application does not

have to explicitly identify themselves as the source of the communication. The protocols will

automatically add the sender’s identification into the source address.

In the case of the TCP and the UDP, source and destination addresses are composed of an

IP address and a network port. An IP address is a unique numeric identifier assigned to each

host on the network. This identifier is used by the IP to deliver data to the correct host on the

2TCP stands for Transmission Control Protocol, IP stands for Internet Protocol.
3Transmission Control Protocol
4User Datagram Protocol
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network. The IP address is a 32-bit value when using IPv4 and is a 128-bit value when using

IPv6. The IP address provides the information needed to get messages to the correct ma-

chine, but it does not provide any information about which process or application within the

machine should receive the data. This information is provided by the network port number

which is a 16-bit value used to identify the source or destination of network communication

within a single host. Network ports allow processes to create software-definable communi-

cation points within a host. These points can then be used to send data over the network to

another process with a corresponding IP address and port number.

When a process wants to send a message, it issues a call to the transport protocol. It is the

responsibility of the transport protocol to handle the actual transmission of the data. This may

involve breaking the message into smaller pieces, making calls to lower level protocols, and

any number of other issues. All of these issues are handled transparently to the initial sending

process. When the data arrives at the destination port, the receiver can issue a corresponding

receive call to read the message from the network.

Transport protocols differ in the level of reliability that they guarantee to the user. Those

that guarantee that all messages sent will arrive at their destination are called reliable transport

protocols, while those that may only promise to make a best effort attempt to successfully

deliver the message are called unreliable transport protocols. The TCP is a reliable transport

protocol whereas the UDP is an unreliable transport protocol.

Message transmissions may fail for any of several reasons ranging from buffer overruns

to faulty hardware. In the case a reliable transport protocol, the message will be resent until

it is correctly transmitted. Unfortunately, guaranteeing reliability leads to extra overhead in

the communication that can decrease performance. Because of this, many tools use unreliable

communication to reduce the networking overhead.

2.1.4.2 Group addressing

The previous section discussed how to send a message to a single destination, a process

called unicasting. But what happens when a process would like to send a message to many
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destinations at once? It is possible to iteratively send the message to each individual destina-

tion one at a time, but this consumes more time and network resources than is strictly needed.

Additionally, iteratively sending the data is potentially more error prone to implement. For-

tunately, many transport protocols support group addressing methods that allow for sending

messages to multiple destinations simultaneously.

Broadcasting One of the simplest and most basic group addressing modes to use is

broadcasting. Messages sent using broadcasting go to all hosts on a specified subnet [Ste98].

This subnet is usually the local subnet of the sending host. The broadcasted message is re-

ceived by all hosts on the subnet and can potentially be sent as a single message, thereby

minimizing the traffic on the subnet. Broadcasting can be useful for situations where either

every local machine needs to receive the same message or only the subnet of the destination

node is known. The latter case is more generally called “resource discovery” and is one of the

most widely used applications of broadcasting. Broadcast-based resource discovery is used

in protocols such as ARP (Address Resolution Protocol), BOOTP (Bootstrap Protocol), DHCP

(Dynamic Host Configuration Protocol), and NetBios.

Broadcasting can be applied successfully, but it has several problems that keep it from

being widely used. The first problem is that it can only be used on a single subnet. Broadcast-

ing is not designed for use with multiple subnets because it is not normally desirable to send

messages to more then a single subnet. The second problem is that broadcasting dramati-

cally increases network traffic and consumes more bandwidth than is needed for most group

addressing situations. Broadcasting also suffers from the problem that it can not be used to

address multiple hosts on a more fine-grained level. The message can only be addressed to

everyone not to just a few members of a select group. To solve these problems we need a

more feature rich group addressing mode.

Multicasting Another group addressing mode is multicasting. Multicast addressing al-

lows messages to be sent to a set of destination nodes that can be located anywhere on the

network. Nodes communicating using multicasting register their interest by joining a multi-
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cast group. Each node that is a member of a given multicast group can then send a message

to all the other nodes in that group. The message only transmits to the other members of

the group. An advantage of using multicasting compared to unicasting is that multicasting

can be more efficient in its use of bandwidth. Since the same message is being sent to each

destination, the transport protocol can take advantage of routing trees to make sure the mes-

sage is only transmitted once over a given communication link. This can greatly reduce the

overall resources used to transmit the message and can allow all the messages to reach their

destinations faster then sending them in multiple unicast messages.

2.2 Collaborative Virtual Environments

The term “collaborative virtual environment” can mean many different things. In the most

general form it can be used to describe nearly any computer-controlled system that allows for

collaboration. Unfortunately such a broad definition makes it very difficult to discuss CVE

software in any concrete terms because it covers so many types of systems. This definition

can apply to applications ranging from online web forums to MUD clients and to MMPOGs.

Because this definition is so broad, will use a narrower definition. In our case we are going

to examine the specific subset of CVEs that evolve from traditional virtual environment (VE)

systems such as scientific visualizations, immersive VR, and gaming.

For the purposes of this research, we use Singhal and Zyda’s definition of a collaborative

virtual environment as a “software system in which multiple users interact with each other in

real-time, even though those users may be located around the world . . . These environments

aim to provide users with a sense of realism by incorporating realistic 3D graphics and stereo

sounds, to create an immersive experience” [SZ99].

The section sets out to describe further the specific aspects of CVEs and what issues are

involved in their creation. We begin by describing the characteristics of a CVE. This is fol-

lowed by a description of several perceptual issues and their relationship to CVEs. We then

describe several technical issues and finish the section with a detailed description of one of

the technical requirements of a CVE system.
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2.2.1 Characteristics of a CVE

A CVE system differentiates itself from other collaborative systems by possessing the fol-

lowing characteristics:

• Shared sense of space

A CVE gives all users the sense that they are not only in the space that makes up the

virtual world, but that they are actually a part of the world. This space may be a room,

a vehicle, or just an imaginary place. Whatever the space is, it should be presented

to all users in a consistent way so that all users feel they are experiencing the same

environment. Though the space does not have to be presented graphically, many of the

most effective CVEs represent the shared space using an immersive three-dimensional

graphical representation.[SZ99]

• Shared sense of presence

Participants in a CVE should not feel alone in the environment. Instead they should

perceive that they are sharing the space with other users. This feeling of being with

other users in the shared space is referred to as having a shared sense of presence. This

sense helps users interact with and relate to each other in the shared environment.

In most current CVEs, users are represented using a virtual embodiment called an

avatar. An avatar is a graphical representation of the state of a user in the environ-

ment. It is normally articulated with characteristics similar to a “real” human. These

may include arms, legs, joints, and head. Although avatars usually take a humanoid

form, this is not a requirement. Depending upon the specific environment, it can be

better to represent the user’s avatar using a more immaterial representation.

An avatar gives the other users in the environment a way to know what other users

are present, what they are doing, and how they are relating to each other. When a new

user enters an environment, the other users can see the new user’s avatar. When one

participant is talking to another they can use the avatar to get an understanding of the

current body language of the other user.
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The avatar representation has routines running that control the current representation

presented within the CVE. These routines create an avatar representation using all cur-

rently known information and sometimes use an avatar simulation to present a higher

fidelity representation.

• Shared sense of time and interactivity

A CVE needs to bring people together and support real-time interaction where all col-

laborating users see all interaction as it occurs. When one person makes a change every-

one else immediately sees the interaction and the associated change. This also allows

users to interact with each other directly. By allowing users to share these actions in

real-time the system provides a shared sense of time for all users. It is this shared sense

of time that provides a temporal framework for making decisions related to the flow of

cause and effect within the system.

• Shared communication

Communication is a cornerstone of collaboration. If users can not communicate with

each other, it becomes difficult, if not impossible, to collaborate effectively. Although

visualization allows for some shared communication, in most cases it does not provide

enough on its own. Because of this, most CVEs have support for additional methods

of direct communication. These methods may include communication channels such as

speech, text, gestural, or video.

• Method of sharing

As the previous characteristics illustrate, CVEs allow participants to come together in

an environment to see each other, communicate with each other, and inhabit the same

space at the same time. But for a CVE to allow useful collaboration, it must also allow

the participants to share data within the environment and share control of this data.

The data users share within the environment may range from engineering data to pho-

tographs. It is not the type of data that matters; it is the fact that collaborating users
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want to share this information with each other. This shared information forms the basis

of many of the discussions and collaborations between the users.

It is not enough to allow users to introduce new shared data; the users also need to

share control of the information once it is part of the virtual world. Without shared

control the CVE would be little more than a passive environment similar to a movie

where all the users just observe the updates that other users are making. By sharing

control, all users can manipulate and modify the information to actively participate

in the collaborations. An example of shared control from the engineering domain is

collaborative design reviews. When a new model is introduced into an environment,

each user will want the change to manipulate the design is ways such as moving the

model around of disassembling it. This type of shared control is key to many shared

environment scenarios.

2.2.2 Subjectivity

Most people make the understandable assumption that everyone else experiences the

world in the same way that they do. People also tend to assume that the world as we perceive

it is how the world exists in reality. In both cases, these assumptions are wrong. In this sec-

tion we will discuss these assumptions and how their existence can be used to our advantage

when designing CVEs.

The perception of an individual person is based upon their personalized view of the

world. This view is an internal representation of the world that is based upon the real world

the individual is observing. Although based upon the real world, this internal representa-

tion may vary significantly from the real world being observed. Because of this disparity we

recognize that there are actually two distinct world representations. There is the objective

physical world of reality and the personalized internal world of the individual [?].

The objective world contains the true state of the physical world. The physical world is

made up of objects that have a completely defined state. The state of an object may include

things such as position, color, and any number of other attributes. This state is an absolute
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definition of an object with no variability in the definition. An object attribute has a single

quantifiable value and there is no room for interpretation. For example, the physical color

of an object is defined by the frequency of the light waves reflected from the object. Given

the same lighting conditions this value does not vary. It is constant and is presented to every

observer in a consistent way.

The perceptual world, on the other hand, is very personalized because it is only repre-

sented internally within the minds of each individual. It is based off individual perceptions,

judgments, and past observations. In most cases it reflects the objective physical world, but

it is not an exact copy. This perceptual difference can be seen in the way each person sees

color in a slightly different way. What looks like two vastly differing shades of orange to one

person may look like a single shade of red to another person. As compared to the absolute

object states in the physical world, all states in the perceptual world are qualitative and highly

subjective. There is no single “correct” perceptual world model.

Because humans create their internal worlds based on individual perceptions, it is impos-

sible to have exactly the same experience as another person. This can be seen by looking at

the way two people in everyday life can both experience the same events but describe them

differently afterward. They both saw the same things happen, but their perceptions varied

based upon their personal perception of the situation. Each individual has a distinctly sepa-

rate perceptual model of the world, and no two internal world models are exactly the same.

The variation in perception of the same situation from one person to the next is called

subjectivity. Subjectivity can be defined as a differing in experience of an objective world due

to factors internal to their perceiver such as personal preference, aesthetic sensitivity, cultural

background, and so on [Pet99].

Subjectivity is also exhibited by users in virtual environments. When a user perceives a

virtual environment, she does not necessarily perceive the current state of the environment.

Instead, a user’s perception of a virtual world is based upon a internal representation that

is subjective. Their perceptions are based upon what they perceive as the current state of the

environment and what they have experienced as the previous states of the environment. Even
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if two different users are presented with exactly the same representations of the environment

with the exact same changes, the user’s perceptions are likely to be slightly different.

Another way to examine subjectivity as it relates to CVEs is as “equivalence of experience”

[Fit99]. Each individual experiences the environment around them in slightly different ways.

If two different people look at the same “red” object they may both perceive the color red

differently. But the fact that there exists a set of common terms to describe these experiences

allows them to communicate an equivalent perception. So although each individual may per-

ceive a different color, they both describe it as red. As long as we can describe an experience

in the same way to everyone else, then we will have all shared the same experience.

This equivalence of perception is the key to using subjectivity to relax the presentation

constraints of a CVE. Because each individual user’s perceptions of the environment is sub-

jective and therefore not based exclusively upon the objective state of the system, the states do

not have to match for each user. Our goal is simply to provide for equivalence of experience

by allowing the perceptions of each user to be consistent.

Consider an example where there are three users A, B, and C in an environment. If user C

hits a ball, both A and B should think that C hit the ball as well. If the presentation is slightly

delayed for one user compared to the other, that is fine as long as they both have a consistent

perception of the environment. As Fitch refers “both users end up with an equivalent inter-

pretation of the virtual world and so can corroborate their perceptions without confusion”

[Fit99].

We will discuss relaxation of presentation constraints in more detail later, but for now it

is worth noting that without this ability it would be impossible to create true collaborative

virtual environments.

2.2.3 Issues in Collaborative Virtual Environments

Crafting software for creating CVEs is much different from other software construction

tasks. The task of creating CVEs involves taking into account many challenges and require-

ments that are unique to this type of software. By their very nature, CVEs must deal with
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issues relating to human computer interaction, distributed systems, extreme scalability, flex-

ible deployment, and heterogeneous execution. This section will go into the details of these

issues. We will describe each issue, its impact upon the design and implementation of soft-

ware for CVEs, and when possible we will describe common solutions.

2.2.3.1 Interactivity

The single largest challenge to developing CVEs is providing support for interactivity

within the environment. If a virtual environment does not provide interactivity it will not

be convincing. The users will lose the illusion of being a part of the virtual world and will

instead see the environment as indirectly responding to their input.

To support distributed interaction effectively, a CVE must support two capabilities. First,

users need to receive nearly instantaneous response to their interactions within the environ-

ment. When the user reaches out and grabs an object to move it, the user needs to think

they immediately take possession of the object and are able to move it. If instead, the system

pauses or blocks the action while processing some network requests, then the user loses the

sense of direct interactivity. This first capability is needed to make the system look responsive

to the local user. The second capability needed is that users quickly receive updates about

interactions of remote users within the environment. This is important because it helps to

allow multiple users to all interact with the same objects in the same environment. If remote

updates are not reflected to the local user quickly enough, then the multi-user interactions

taking place begin to break down due to perceived lag in the system.

As an example of the types of constraints that CVEs place on interactivity consider the

situation shown in Figure 2.1 on page 32. The user would like to move a shared object rep-

resented by a ball. The ball’s state is being managed by a remote machine, so the user’s local

machine can not directly update the ball’s position. Instead a request is sent over the network

to the remote machine. The remote machine processes the request and makes the necessary

changes to the ball’s state. Then this state change is sent to all machines in the CVE including

the node that originated the change.
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Figure 2.1 Grabbing a remote ball

Because the local machine needs to send a request to the remote machine and wait for the

response, the results of the interaction are not immediately seen locally. If we assume that

the network latency between the local and remote machine is L and that we initially attempt

to move the ball at time Tinitial then the earliest that the user could see the response to the

interaction is Tresponse ≥ Tinitial + 2L. So the amount of lag in response is equal to twice the

latency of the network (Tlag = 2L). If this lag is too great, then the user will not find the

environment sufficiently interactive.

In summary, the interaction lag in the system needs to be reduced as much as possible. It

is not possible to remove all lag from the system, but the goal for any CVE system design is to

reduce or mask the lag so the user feels that the environment is local. The system should make

a best effort attempt to give the users the illusion of direct and immediate control over the

environment. This will allow the user to see and react to the VE in real-time with no perceived

delay between their actions and the effect of those actions on the shared environment.

2.2.3.2 Distributed systems and algorithms

Another challenge involved in implementing CVEs is dealing with the complexities in-

volved in the distributed systems and algorithms needed by such a system. Implement-

ing distributed algorithms is much more difficult than standard serial algorithms or multi-

threaded algorithms because developers have to account many extra design issues. These
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issues include: network latency, limited network bandwidth, data loss, network failure, con-

currency, and asynchronous communication.

We will now describe these issues in more detail referring to Figure 2.1 on page 32 as an

example of a typical CVE remote operation.

Network Latency: Because distributed algorithms rely upon networking for exchanging data

between the remote nodes, they must account for the communication lag introduced by

network latency. Take as an example the case where the local node requests the current

position of an object that is owned by a remote node. The request travels along the

network until it reaches the remote node. The remote node then processes the request

and sends a response back to the originating node. When this response is received it can

then use the data in its local algorithm.

The difficulty in the example is that the local node must wait for the response message.

This could mean that the local node is waiting for hundreds of milliseconds or more.

During this time we do not want the local node to block waiting for the response. If

it did this, then the local representation of the CVE would “freeze” and stop being re-

sponsive to the user. Instead we would like the local environment to remain interactive

and responsive while the request is being processed.

To allow the local system to remain interactive, the request needs to be processed asyn-

chronously. Instead of waiting for the response the local node should continue execution

and at some later point in execution, be alerted that the response has been received.

Limited Bandwidth: The network links being used by the CVE have limited bandwidth. This

is an issue in algorithm implementation because it limits the amount of data that can rea-

sonably be passed between nodes as part of method calls or data updates. For example,

if a CVE has a model of a car in the environment, it may be possible to send an update

containing the position of the car many times per second, but it will not be possible to

send the entire data for the car model as frequently.

Concurrency: The algorithms that control CVEs also have to deal with concurrent execution
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of the code across multiple nodes. Every node in the CVE is simultaneously monitoring

and updating the state of the shared environment. Additionally, some nodes may be

executing simulation code for controlling the virtual world. This means that while the

local node is requesting the position of the ball from the remote node, another node

connected to the CVE may be doing the same or even updating the position of the ball.

Keeping the state of the shared environment consistent requires that the implementation

code function correctly in the presence of this degree of concurrency.

2.2.3.3 System heterogeneity

Another issue that CVEs must account for is client heterogeneity. The clients used to par-

ticipate in CVEs can and do have vastly differing capabilities and resources. Each participant

has different machines with varying local hardware, resources, and personalized configura-

tions. A CVE must be able to run effectively on all of these different combinations of systems.

Each client participating in the CVE session will have different computational, graphical, and

audio capabilities. The CVE client software needs to take advantage of the local resources to

provide the best presentation possible. This requires that the CVE can be presented in differ-

ent ways at each client. For example, on one client the environment may be rendered using a

very large number of graphics primitives, while on another client with less rendering ability,

the world would be represented with less graphical complexity. To allow for this, the design

of the CVE must allow for adaptability in local presentation and computation.

If the CVE client does not have the ability to adapt to local resource constraints, then all

clients must present the world using the same representations. Because each client would

use the same representation and perform the same computations, the experience of all users

is degraded to the abilities of the lowest performance participant. This applies not only to

graphical representation but also to network communication and interactivity. If each client

is required to send out network change updates at the same rate, then the update rate of the

system is limited to the network resources of the slowest system. So for example if there is

a shared CVE with 10 participant where 9 users have high-speed network connections and
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the remaining user has a much slower network connection, the experience of all users will be

limited by the performance of the single low-speed connection.

Assuming that each participant has the same computational resources, each system may

have different presentation and interaction methods available locally. For example one system

may be completely desktop based with just a monitor and a mouse while another system

may be an immersive environment such as a CAVETM. This presents a problem for CVE

designers because the interaction and viewing capabilities of each system are widely varied.

In the immersive system the user may have a positional interaction device that allows them

to physically reach out and grab an object in the space. Using a desktop environment, the

same user would have to use the mouse to move some virtual representation of their hand

to grab the same object. This is potentially a much more difficult interaction and can lead to

asymmetry in user interaction abilities. Additionally interaction differences can lead to the

development of applications that either cannot be fully experienced or can only be partially

experienced because of interaction limitations.

Interaction asymmetry can also lead to issues of fairness. When two users are both in-

teracting with each other in the same environment but each of them has different interaction

methods, one user may have an unfair advantage. This advantage could be caused by extra

capabilities that they may posses or could even be caused by have less interaction abilities

which could allow short cuts in interaction. For example if the shared environment is a game

where a user needs to rapidly turn from side to side to see the environment (such as a first

person shooter), then a user of a desktop system would have an advantage over a user in a

fully immersive system. The reason for this is that the desktop based user is going to be using

indirect methods to turn and walk. These methods are not restricted by physical constraints

and will provide an advantage. The user in the immersive environment may not be able to

turn entirely around in less then a second but the user of the desktop system may be able

to turn around several times per second with no ill affects. Correspondingly, the user in the

immersive environment will potentially find it easier to grab a virtual object then someone

on a desktop environment would. This is because for the immersive user grabbing is a very
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natural interaction; the user reaches out and physically grabs the object. The desktop user has

to interact indirectly with a mouse to accomplish the same goal.

CVE developers must take system abilities into account to create worlds that can scale to

any local system abilities.

2.2.3.4 Scalability

LSCVEs must deal with issues of scalability. Scalability is primarily measured in terms

of the number of participating entities. These may be users, objects, or computer controlled

agents. Theoretically there are 2num entities possible interactions that could occur at any given

moment. Managing this immense number of potential interactions is necessary to allow a

large number of users to participate at any given time. If the clients are not able to interact

with each other and immediately see the results of those interactions, the users’ experience in

the CVE will break down and effectively make the system unusable.

The interactions related to scalability are tied to the complexity of behavior within the

environment. The degree of the inter-entity behavior and the complexity of that behavior

actually determines the amount of interactions that must be supported in the environment.

If all clients of the environment are simply viewing the current state and that state is deter-

mined solely by a central server, then the problem of scalability is greatly reduced. Conversely

though, if every entity in the environment is simultaneously modifying the shared state and

every client needs to see every update the problem of scalability become nearly intractable.

Fortunately the complexity of most useful CVEs falls somewhere in the middle of these

two extremes. In most CVEs, the users don’t all modify every piece of data and they are not all

interested in the state of every piece of data every frame. Instead, collaborating entities form

groups of collaboration. Within those small groups, each entity does operate upon the same

shared data and each entity does need to see all the updates. To support a scalable system,

the CVE software needs to recognize these groups of collaboration and use this knowledge to

optimize the network communication within the system.
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2.2.3.5 Deployment

Another issue that must be handled for CVEs is deployment. Deployment takes into ac-

count all the issues of how to get the client software and any associated resources to each

of the client systems and configure the client to run correctly. Traditionally this had been

handled using manual setup where it is the user’s responsibility to make sure that they are

running the correct version of the client software and have the current version of any other

offline resources. This method can be rather tedious and error prone since users must be con-

stantly vigilant to ensure they are running the correct software. It also causes problems for

CVE developers because it is impossible to guarantee that the users always have the correct

versions.

Recently CVE software has started to rely more on automated software updates. Using

this method, each time the clients connect to the CVE, they automatically download any up-

dated software and resources that are available. This removes the updating burden from the

user and also allows the CVE to guarantee that the clients are all using correct versions of the

resources. Configuring the client software still needs to be done manually, but even this can

be eased by providing step-by-step tools and other methods to make it simpler to setup the

systems.

It should be noted that automatic deployment suffers from the added complexity of het-

erogeneity and security. Heterogeneity introduces complexity because the automated update

has to make sure to provide the correct version of the environment for the actual local hard-

ware. If the local machine is using an Intel-based CPU running Linux, then providing it with

an updated version of the software that is compiled for an Intel-based Windows systems will

not work. The updating mechanism must be able to take any system specific issues into ac-

count when performing the update. Additionally, since it is downloading executable code,

the updating mechanism must provide a method to ensure the update is valid and has not

been corrupted or tampered with in any way.

The software architecture of the CVE system also influences deployment. If the software

is packaged as a monolithic system, then each time the system is updated the entire distri-
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bution needs to be updated and downloaded to the local host. If instead the CVE system is

component-based, then it could be packaged as individual components. When a component

is updated, then only that single component need be downloaded to the clients. Also, if the

system is extended this extension could be captured in a single component for download.

Because of their more modular design, component-based systems generally provide for more

deployment options and are thus a good choice for LSCVE systems.

2.2.3.6 Failure management

In any software system, failures will occur. In a software system involving as many ma-

chines and complexity as a LSCVE, they not only occur, they occur very frequently. Failures

can occur because network connection may become unstable either temporarily or perma-

nently. Other failures occur because newly introduced user code may contain errors. Addi-

tionally, since each node may potentially have slightly different copies of the current code,

there can be failures that occur because of differences in the underlying code itself. In a sys-

tem as large and complex as a large scale CVE it is impossible to remove all sources of failures.

Instead we have to do our best to design systems that can function correctly even in the pres-

ence of errors.

The types of CVE systems failures can be broken down into four major groups [SZ99]:

System stop: A system stop occurs when a failure in the system causes the entire CVE to stop

functioning or crash. This type of failure may occur when centralized resource

become unavailable such as a server in a client server based system. This failure

can also occur if a corrupt resource is introduced into the CVE. This could cause all

clients to crash and disconnect from the system. System stop failures are the most

severe type of failure and as such are the least desirable type of failure. In general,

a well-designed CVE should protect the system from system stops to prevent them

from ever occurring.

System closure: A system closure occurs when the CVE system is still executing, but new

clients cannot join the current CVE. There are several cases where this type of fail-
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ure can occur, including failed centralized resources like an authentication server,

scalability problems, and network failures. Active CVE users are not directly af-

fected by this type of failure, but it can prevent the CVE from being useful since

new users will not be able to join the session. This type of failure is serious, but if

it is only a temporary failure the system can keep functioning correctly.

System hindrance: A system hindrance occurs when a failure causes the users’ experience

of the CVE to degrade. These types of failures can range from annoyances to

severe problems. An example of a non-severe failure of this type is a single user

becoming disconnected from the environment and thus disappearing from the

CVE. The perceptions of the other users will be degraded because the other user

disappeared, but the environment will still be running. There are more severe

types of hindrances such as a system crashing that is controlling a simulation that

many users are interacting within. In this case, the failure has a wide ranging

effect because it keeps the CVE from functioning correctly for many users. In

many cases, there is little that the CVE system can do to avoid system hindrances,

it can only attempt to minimize their impact and prevent this type of failure from

escalating into a more severe system stop failure.

System continuance: System continuance failures are failures that do not cause noticeable

effects on the active CVE. This type of failure may include transient resource fail-

ures or more severe resource failures that can be automatically recovered from.

An example of a low-impact failure would be a system monitor failing. Although

monitoring may not be working, the users of the CVE will not notice the failure.

A potential more severe error would be a server crash. If the system can automat-

ically transition to a backup server, then this failure will be transient and user will

not notice the change. But if the system does not support transparent transition-

ing to a new server, this failure could cause a system stop. The goal of any CVE

system is to make it possible to transform as many failures as possible into system

continuance failures.
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2.2.3.7 Continuous operation

In the case of extremely large scale CVEs, there may be tens, thousands, or even millions

of participants. Many recent massively multi-player games already maintain worlds with

nearly one hundred thousand users participating simultaneously. In such large worlds, the

CVE system must be in continuous operation. If the system has to be restarted each time

a new software upgrade is needed to fix a bug or add a new feature this would be a great

inconvenience to the users and would mostly likely lead the users to finding anther system

that does not suffer from this issue. The system must instead support continuous execution

where system components can be replaced, upgraded, and even added while the system is

still executing.

There have been a few notable research efforts aimed at creating such a system. One of

the leading efforts is the Bamboo project. Bamboo is based upon the following assumptions

[Wat98, bam02]:

1. Eventually, there will exist a persistent virtual environment shared simultaneously by

billions of participants.

2. There can never be a global reboot.

3. All modifications must happen on the fly.

The goal of Bamboo is to enable entirely dynamic scalable virtual environments to be always

available. The design of Bamboo is based upon a plug-in component metaphor. Modules are

loaded dynamically and can be retrieved from a local cache or remotely via protocols such

as HTTP. Bamboo also supports the automated loading of module dependencies which are

specified through an inter-module dependency specification method. Bamboo is designed to

be cross-platform and to provide a common run-time for the modules to execute in. Bamboo

aspires to solve a very complex and difficult problem. The project has done much to accom-

plish this, however at the time of this writing there is still much to complete. It is our hope

that Bamboo or a similar project will be able to provide the underlying infrastructure for the

next generation of persistent CVEs.
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2.2.4 Shared state

As we previously stated, a key requirement of any CVE is to provide the users with a

shared sense of space. A user feels a shared sense of space if they can meaningfully interact

with remote users while being presented with a view of the virtual world that is consistent for

all users. Because of subjectivity, world consistency does not have to be absolute. The worlds

only have to be consistent enough to allow equivalent interpretations of the virtual world.

Providing sharing and consistency of the virtual world data is one of the core responsibili-

ties of any software architecture for CVEs. CVE architectures normally provide sharing of the

virtual world by implementing a data structure for sharing state. For the remainder of this

section we will refer to this data structure as the shared state data structure or shared state

for short. In most cases this data structure stores every element and attribute of the shared

environment, including:

Object information: All objects in the virtual world store their full state information in the

shared state data structure. Each object contains a mixture of common and custom object

attributes. Examples of some common attributes include type, position, color, material

properties, and geometric representations. Custom attributes can include anything a

user defines for their application. In many cases, the sharing of objects with state is the

primary method the system uses to track state and support user interaction.

User information: The shared state also includes information about who the current users

in the environment are, where they are located, and the current state of their avatar.

The user state includes information about the position of the user’s limbs, the current

direction they are facing, and nearly any characteristic that the environment may want

to know about the user.

Algorithm information: The shared state may also include data that is specific to certain

algorithms running within the system. This type of information is normally shared as

object information, but differs in that there is not necessarily a visual representation of

the information. The data is only shared to allow distributed algorithms to share state
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information. An example of this type of information would be a collision detection data

structure for a set of objects in the environment.

Creating a method to share state information between nodes is one of the most difficult issues

in CVE design. The method used can dramatically impact not only how well the system scales

and how interactive the system feels, but also what types of applications can be run within

the environment.

One of the reasons that this is such a difficult design problem is that there is a constant

trade-off being made between realism and resource consumption. If the designers want all

participating users to see every state change immediately after it is made, then the system

must send out complete updates to every node each time a change is made. This can consume

an enormous amount of networking resources and requires an ever increasing amount of

bandwidth.

Additionally, if the designer wants to ensure that the state at each node is completely

consistent at each moment in time, updates have to be synchronized. In a fully synchronized

system, the node making the change waits to update its local state until every other node is

ready to update. Then when each node is ready they all update their state at the same instant

in time. This method of fully synchronized consistency dramatically increases system latency

and correspondingly increases lag in distributed user interaction.

This trade off between realism and resource consumption is expressed in the Consistency-

Throughput Tradeoff [SZ99, pg 103]:

“It is impossible to allow dynamic shared state to change frequently and guarantee

that all hosts simultaneously access identical versions of that state.”

As the tradeoff points out, a CVE designer either has to allow state to change frequently and

deal with each node having slightly inconsistent state information, or they choose to keep

a synchronized state that does not easily allow updates. This choice of how to deal with

consistency versus resource consumption leads to many different ways to implement shared

state data structures for CVEs.
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There are three fundamental methods used for sharing state: central repository, frequent

state regeneration, and state prediction [SZ99]. Most real world systems use one of these

methods or a hybrid approach that combines features from each of them. The remainder of

this section will describe each of these methods along with one example of a hybrid method.

2.2.4.1 Centralized repository

Centralized repositories maintain a consistent CVE state by keeping a single copy of the

CVE at a centralized location. All users participating in the shared environment are presented

with a view of this centralized copy of the data. Because all users are referencing the same

copy, every user sees a consistent view of the environment. When a client needs to know

the current state of an object in the virtual world, it must query the central repository for the

current state. Clients may cache the state of the repository locally to increase the performance

of reading the shared data. Updates to the repository are synchronized using locks at the

central authority. The locking system used is responsible for guaranteeing that updates are

performed in a valid order and that all clients receive the updates in the same order.

There are many widely used examples of centralized repositories outside the area of CVEs.

Networked file systems are one of the most common examples. A networked file system

provides each client with a consistent view of the current state of a shared file system. When

changes are made to the files they are synchronized by the server using file locks. These

locks ensure that all hosts sharing the file system see a consistent state for all the files. Other

examples of centralized repositories include shared databases, web forums, and electronic

scheduling systems.

There are many advantages to using centralized repositories for maintaining shared state.

The primary advantages are that the programming model used is very simple and that data

consistency is guaranteed. Since all object accesses are synchronized by a central server, the

programmer has to handle very few synchronization issues. When they want to write code

that updates the shared state, the code simply needs to acquire the object’s lock, write the

new data, and release the lock. This method is very similar to the standard multi-threaded
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development model. The server handles the details of guaranteeing consistency of the data

and the ordering of the updates.

Unfortunately there are some major disadvantages to using a centralized system. Since

there is a single centralized server, the performance of the entire system is restricted to the

performance of that single machine. The server machine presents a bottleneck in terms of

processing power and network throughput. The server also becomes a single point of failure

for the system. If the server machine crashes or becomes disconnected from the network then

the entire system stops functioning.

Regardless of these major disadvantages, centralized servers are usually one of the first

state sharing methods implemented by new projects. The reason for this is two fold. First they

are relatively easy to develop because they involve no complex distributed algorithms. There

is no need for a distributed consistency algorithm to synchronize data across machines be-

cause only one machine has a valid copy of the data. The second reason they are so popular is

that they are very similar to many other client-server based systems in common use. Because

of this, developers are already familiar with the issues involved in creating such a system.

Thus the time to create and debug a working system in reduced and allows developers to get

a system up and running quickly.

2.2.4.2 Virtual central repository

A very popular extension of the centralized repository approach is to use a virtual central-

ized repository. In this type of system, the shared state appears to be in a central repository,

but there is no single central server. Instead, the repository is distributed across all the ma-

chines sharing the environment. The shared data is kept consistent using distributed consis-

tency protocols. The various consistency protocols differ widely in their behavior based upon

what the specific protocol is designed to optimize.

These systems inherit the same advantages as the centralized repository method, but re-

move some of its limitations. Because there is no single central server machine, there is no

associated performance bottleneck accessing a single machine. Unlike centralized servers
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where high load degrades the entire system, a virtual repository can scale to use all the com-

puters in the network. Virtual repositories also help to alleviate bandwidth constraints since

there is no central machine that all data must flow through. Instead the data distribution is

shared among all the nodes in the system. Each node sends out updates for whichever data

objects it maintains.

Virtual repositories also have much better support for fault tolerance. With a distributed

repository, there is not central point of failure. If a machine fails the rest of the system will

keep running. In many cases it is even possible for other machines to take over the respon-

sibilities of the failed machine. This allows the system to work around many types of faults

that would otherwise trigger a full system stop.

It should also be mentioned that nodes in a distributed repository setup do not have to

maintain a copy of the entire shared state. If there are aspects of the shared environment that

they are not interested in they can ignore those objects. Each node only needs to maintain the

state of any objects that it is currently presenting to the user.

2.2.4.3 Frequent state regeneration

Centralized solutions provide a degree of absolute consistency. In its strictest sense, abso-

lute consistency guarantees that if two viewers are remotely observing the same object at the

same time it must have the same state. Because of network latency, centralized solutions do

not normally provide for absolute consistency, but they are based on the idea that absolute

consistency is the goal of the system.

Attempting to provide absolute consistency within a collaborative system is not always

needed, warranted, or even possible. There are many objects in a CVE system for which

clients do not require absolute state consistency. Consider an object that is moving through

the sky such as a plane. If two separate clients draw this object at a slightly different location

at the same time is there a problem? As long as the positions are relatively close to each other,

the users observing the environment will perceive the behavior of the object similarly due to

user subjectivity.
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Systems and objects that do not require absolute consistency can use frequent state regen-

eration to share state. When using the frequent state regeneration method nodes periodically

broadcast complete object updates. Each node has a set of objects within the environment that

they control. Every node in the system periodically broadcasts the full state of all the objects

under its control. Each client that receives these updates modifies their locally cached copy

of the object’s state to contain the new update. This allows the clients to always use the most

recently received value to present the environment to the user

There are several different methods that can be used to decide how often to send these

updates. Some systems send the updates whenever a change to the object occurs, others send

updates at a predetermined rate. It is also possible to use varying rates for each individual ob-

ject in the system. One commonality between all methods is that most require an object’s state

to be sent out at some minimum rate. This is needed so clients joining the environment can

quickly observe the most recent version of all objects even if some of them are not changing.

This type of system provides several advantages. The first of these is that any node can

join late and start observing the object updates. After a few update cycles they should have

a complete view of the world. Frequent state regeneration also provide very low latency

updates for the shared objects. Since the updates are normally broadcast immediately after a

change occurs, there if very little that could be done to decrease the latency of the updates.

Another advantage of the system is that it can allow multi-user support to be added

quickly to existing software. Existing software only needs to add support for broadcasting

updates when changes occur and reading received updates into the local system state. Be-

cause of the simplicity of this approach, it has been applied to many single user applications

as a first step toward basic collaborative support.

Unfortunately there are some severe limitations to frequent state regenerations. The most

obvious is that it can consume an enormous amount of network resources. Since every update

is sent to every node, the bandwidth used is very high. Another limitation is that latency

in the updates can lead to user frustration and sickness. Since the data is always behind

the current state, the users are forced to make updates to the system based on out-dated
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information. When these changes turn out to be based on invalid data it can be difficult for

users to interact in the environment. A more subtle disadvantage is that users are able to

perceive differences in objects based upon their update rates and whether they are remote

or local. Since each machine will be limited to sending updates based upon local hardware

and network constraints, the objects will all be updated at differing rates. This difference can

become perceptible and distracting to users. Even worse though is that since local objects do

not suffer from the effects of latency, they will always be at a state in the future compared to

other objects. This can lead to many artifacts in interaction and perception.

2.2.4.4 State prediction

The final method of state sharing that we will discuss is state prediction. This method is an

extension of frequent state updates. State prediction is implemented exactly the same as the

frequent state update method except that clients are allowed to approximate state between

updates.

Clients approximate state between updates using interpolation. The client can use any of

several algorithms to do this interpolation but the fundamental premise is the same; the client

is using old data updates to approximate the current state of the object at the time that it is

being rendered. One simple method that can be applied to physical objects is to use the laws

of Newtonian physics. In this type of a system the velocity and acceleration of objects is either

implicitly computed from the positional updates or is explicitly sent as part of the updates.

Between updates the object’s position is approximated using the basic laws of motion.

In addition to predicting object state, this method can also allow the system to be more

restrictive about when to send updates. The goal of the update system is to only send updates

when they are needed. If the number of updates sent can be reduced, this can reduce the

amount of network traffic and thus increase the overall performance of the system.

One common way for prediction-based system to reduce the number of updates is to

make use of the knowledge of the prediction algorithms being used. In this setup, the node

controlling an object runs the same prediction algorithm on the object that the remote clients
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are using. Based on this, the controlling node can track the difference between the predicted

state and the actual state. If this difference exceeds some predetermined threshold then a

change update is generated. For best performance, the threshold should also take into account

how long it has been since the last update was sent and how long it will take for the new

update to reach all the clients.



www.manaraa.com

49

3 Related work

This section covers a variety of previous work related to this research. First we start with

an overview of several of the most influential and widely used CVE research projects. Then

we describe a few popular world model representations that have either been proposed or

are currently in use.

This section does not describe non-VE collaboration tools such as chat rooms or instant

messaging since these tools are outside the scope of this research. Where tools of this type

are discussed in the following chapters we will directly reference and describe the particular

software and features that we are discussing.

3.1 CVE architectures

Each of the following tools represents a development environment for creating CVEs.

Each system has been used successfully to create CVEs and has contributed new methods

to the field.
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3.1.1 DIVE

Data sharing Hierarchical entity tree

Programming model All communication happens through the world

database

Resource handling Resources are requested from closest neighbor with

the data

Networking Peer-to-peer multi-cast. SRM for reliable

multi-casting.

key techniques peer-to-peer multicasting, sub-partitioning of

world, loose consistency of data

3.1.1.1 Introduction

The Distributed Interactive Virtual Environment (DIVE)[FS98, VRM97b, Div03] is a dis-

tributed VR software toolkit developed at the Swedish Institute of Computer Science. The

first version of DIVE was released in 1991 and at the time of this writing the most recent ver-

sion is version 3.3. The DIVE software is a research prototype and is available in binary form

for non-commercial use.

DIVE was also one of the first CVE research projects and has been used on a wide range of

collaborative applications. DIVE is not just a communication library, but has been designed to

be a complete application development framework. DIVE is of particular interest because it

introduced several innovative CVE techniques that form the basis for many current systems.

3.1.1.2 World model

A DIVE virtual world is represented as a hierarchical database composed of entities. Enti-

ties in DIVE represent "objects" in the virtual world and define the object’s graphically repre-

sentation. There are many types of entities in the DIVE system. Each of these types is part of a

entity type inheritance hierarchy that defines the relationship between the entity types. Figure

3.1 on page 51 shows an example of the entity types available in DIVE. In addition to contain-
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Figure 3.1 Entity types

ing the information and behavior specific to each type, entities can also contain user-defined

data and even scripts for defining autonomous behavior. The hierarchy within the database

is used to give an ordering and structural relationship to the entities as well as providing a

structure for defining light-weight distribution groups which we will discuss later.

The software architecture of DIVE is based on a shared, distributed world database. The

DIVE world database is a model of a virtual centralized repository as described in the previ-

ous chapter. Each node collaborating in a virtual world executes a separate application that

uses the world database to communicate with applications running on the other nodes. In

this way, client applications are not able to communicate directly with each other, instead all

communication happens through the world database. The database is cached locally on each

node to provide immediate access for the local application. Figure 3.2 on page 52 shows an

example of five application processes communicating through two world databases.

Because applications communicate only through the world model, there is a complete

decoupling between the application data processing and the distributed networking. This

separation has several advantages. First it has allowed DIVE to change network back-ends

without requiring application changes. A second advantage is that because developers write

applications based only on the world model concept, applications do not require any modifi-

cations to work in a single-user environment.

When an entity is updated on the local system, the shared state is distributed to all other

interested nodes on the network by sending an entity update message. The entity update

message does not contain the entire state of the entity, but only contains the changes to the
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Figure 3.2 World and process model

object. Entity updates are immediately shown on the local system, but delayed on the remote

systems until the update has arrived and been processed.

Any node in the system can introduce a new entities into a world database. Once the

entity has been added, an associated update message will be sent to all other nodes in the

system announcing the new entity’s creation. If the new entity specifies a model file that a

remote node does not have, then DIVE will automatically transmit the required data to the

remote node.

All entities added to the world database are completely autonomous. This allows a node

to join a world, add a new entity, and then exit the world while leaving the entity in the world.

Since the entity has no owning node it can remain in the world database even after it’s creator

has exited.

DIVE supports world persistence, but it is not part of the core architecture. Instead, per-

sistence relies upon either having a copy of the application always running, or having a client

that saves snapshots periodically that are then used to start the system again from the saved

state. It is difficult to implement reliable persistence in DIVE because there is no concept

of a specific node being responsible for or owning an entity. This is an area that the DIVE

developers have said needs improvement.

In addition to standard application data, DIVE also supports audio and video communi-

cation channels within the virtual worlds. These channels are not part of the world database.

Instead, they are distributed using world-specific multicast channels.
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3.1.1.3 Database replication

As we described above, the DIVE world database is cached locally at each node. These

caches simultaneously support two forms of replication: active and partial

When a node makes a change to a local database entry, that update is sent to each other

node. This form of replication is called active replication. It is called “active” because it is

the responsibility of the node making the change to detect that a change has occurred and

“actively” send out an object update.

Partial replication refers to two fundamental features of the Dive world model: loose con-

sistency and light weight groups.

Loose consistency DIVE supports a form of loose consistency that allows the database

models at each of the nodes to be slightly out of sync at any given moment. Because updates

are processed by updating the local copy first and then distributing the update to all the peers,

the update is applied at each node a slightly different times. As a consequence, the database

is not always in the same state at each location. It also seems to be possible that two separate

peers may update the same entity at the same time and send out conflicting entity updates.

DIVE tolerates these discrepancies in the world models and implements services that en-

sure their equality over time (using dead-reckoning and object update mechanisms). The

DIVE developers reason that because most interactive updates are "bursty" there will only be

short periods of time where many updates are performed. They have found that after such

a burst of updates the state of the system will stabilize to some common state given enough

time with no interactions. They describe this as stabilizing into a common “inertia” or lasting

state. DIVE also implements algorithms to further assist the system in synchronizing by peri-

odically synchronizing the data using sequence numbers to track entity version and possible

update requests. The exact method used to implement this synchronization method is not

described in the literature.

Light-weight groups DIVE provides the ability to divide worlds into sub-hierarchies

that are only replicated between nodes that share interest. These sub-hierarchies are called
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Figure 3.3 Light-weight groups

light-weight groups (LWGs). Applications that use LWGs can give DIVE extra information

that keeps it from duplicating and monitoring sections of the database that are not of imme-

diate interest to the application on the local node.

LWGs are defined by grouping nodes within the database hierarchy. Figure 3.3 on page 54

shows an example of a world database with LWGs identified by Ggroup number. So in this world

database G1is the base LWG for all communications in the system. The world database also

defines three other LWGs that are used for this given virtual world. As the diagram shows,

a LWG may be used in multiple locations within the world database. This is done where

there are multiple parts of the world database that may be in the same interest group. When

determining what LWG a node is in DIVE traverses up the world database tree until the first

LWG node it encounters. This LWG is then the group for the given node. The topmost node

in the database is the default LWG for all communication within that virtual world.

LWG are implemented by assigning each group a specific multi-cast channel. This multi-

cast channel is then used to distribute all the data update messages for nodes in that group.

Because light weight groups can be assigned to any multi-cast channel, it is possible for multi-

ple light weight groups to be assigned to the same channel. This allows one interest groups to
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receive updates for multiple LWGs and thus allows nodes to get updates for multiple LWGs

very easily.

Because the sub-groups that define the LWGs are just part of the world database, they are

not restricted to any specific spatial organization as in some other tools. Additionally since

the assignment of LWGs can be dynamically changed at run time it is possible to dynamically

change the interest management of the system while applications are executing. This com-

bination of a very general specification and the ability to make changes dynamically allows

developers to implement high-level interest management algorithms. This has allowed DIVE

developers to experiment with many alternative area-of-interest management algorithms and

allows application developers to tweak the interest management methods for the specific ap-

plication that is executing[VRM97b].

The DIVE developers have found that the use of LWGs dramatically cuts down on net-

work traffic since not all updates have to go to every node. Additionally it allows for increased

scalability because applications only have to receive the updates that are of interest.

3.1.1.4 Network communication

DIVE uses peer-to-peer multicasting for network communication. Peers add themselves

to a group by joining the associated multi-cast channel. Once a peer has been added to the

multicast channel it can send message to all other connected peers.

DIVE supports both reliable and unreliable multicast communication. Reliable commu-

nication is implemented using the Scalable Reliable Multicast (SRM) protocol[FJL+97]. This

protocol uses negative acknowledgments and a request/response scheme to allow reliable

multicasting of data. Unreliable communication is implemented using standard multicast-

ing.

DIVE only uses two basic message types. The message types differ in the type of data

being sent and the reliability needed for the data transfer.

Message types:

• Entity updates and database modifications
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Communication method: Reliable multicast.

All entity updates and database modifications are sent on multicast channels as defined

by the LWG containing the given entity. Although the transmission is reliable there is

no guarantee of message ordering.

• Continuous data streams (audio, video, etc)

Communication method: Unreliable multicast

DIVE maintains a separate set of multicast channel per world for real-time data streams

such as audio and video. All streaming data associated with the virtual world is trans-

mitted on this channel. The data transfer is unreliable to minimize latency and ensure

continuity of data (not consistency). The fact the entire virtual world shares these chan-

nels causes scalability issues with the current implementation.

When attempting to find an entity, a query is sent out on the relevant multicast channel.

This query uses an algorithm supported by SRM based on round-trip-time estimation and a

timeout to find the closest peer with the latest version of the object responds. Additionally

there is multicasting to prevent the query from receiving similar response from other peers.

3.1.1.5 DIVE name server

The DIVE name server is an application that helps clients find and enter available virtual

worlds. A client connects to the DIVE name server with the name of a virtual world that

they would like to enter. The server responds with the current multicast channel for that

world. The name server is only used in this initial communication and is not involved with

any further communication in the system.

If the connecting client is the first to connect to the virtual world, then it is responsible

for loading the initial state of the world. If it is not the first, then it uses a round-trip time

estimation algorithm to find the nearest node likely to have a copy of the world. It then

requests the initial state of the world from this node and begins loading the initial state before

executing the application.



www.manaraa.com

57

Figure 3.4 Example of a MASSIVE application

3.1.2 MASSIVE

Data sharing Direct communication

Programming model Direct communication

Resource handling Application dependent

Networking RPC and streams

key techniques spatial-trading, direct communication

3.1.2.1 Introduction

MASSIVE is a research project from the University of Nottingham[GB95b, GB95a, BBFG94,

BF93, BG97]. MASSIVE was developed as a testbed for several innovative interaction models

and was developed to support up to 10 users in a shared environment. It as not designed to

be a general-purpose VR application development system but is only designed as a telecon-

ferencing system. We still include a description of it here though because it has influenced

the design of many current CVE solutions and it forms the basis of the later MASSIVE3 work

which we will cover in the next section.
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3.1.2.2 System architecture

Massive is based upon the concept of a set of processes that communicate via typed con-

nections. These connections combine RPCs, attributes, and streams. Massive does not use

any shared data structures or databases but instead relies upon all processes to communicate

directly with each other using peer-to-peer interfaces.

This communication method was chosen because it support communication contexts be-

tween objects. When two objects within MASSIVE need to communicate, they form a direct

connection from one to the other. The communication connection provides a context for the

communication. This context simplifies collaborative communication because both ends of

the communication have an unambiguous view of the current state and purpose of the com-

munication. This is an advantage over the distributed systems based on shared databases

because it allows for direct associations between objects and nodes.

3.1.2.3 Spatial trading

The most unique capability of MASSIVE is its spatial trading model of interaction. This

model associates an aura with each object in the world. An object’s aura describes the spatial

extents around an object where interactions are allowed. The system has an aura manager

that tracks the auras of all the objects in the system at any given instant. If the auras of two

objects collide (overlap in space) then the objects are said to have an aura collision. The aura

manager is responsible for detecting these collisions and notifying the objects involved that

a collision has occurred. These colliding objects are then able to communicate and interact

using the objects’ interface(s).

Objects have one or multiple communication interfaces. These interfaces are what objects

used to communicate with each other. For one object to communicate with another, it must

first acquire a compatible interface to the other object. Objects request these interfaces from

an interface trader. An interface trader is a central location that maintains a list of all the

available interfaces for all the objects in the system. When two objects have an aura collision

and would like to communicate, they query the trader for compatible interfaces. If there is
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a compatible interface available, then the trader will return it along with a new peer-to-peer

connection and associated communication context. This connection in the typed connection

that allows objects to communicate and interact

Objects do not initially know about any other objects in the system. They rely upon spatial

trading to discover the other objects in the environment. When an object enters the world, it

contacts the aura manager to register its interfaces and the aura’s of each interface. Only when

the aura manager notifies the new object of an aura collision does the object learn of the other

objects within the system.

Objects can communicate with objects of other types and objects of types that were pre-

viously unknown. This is allowed because all objects dynamically register all their interfaces

with the aura manager. Because the aura manager takes care of hooking up compatible com-

munication channels during aura collisions, the objects do not ever have to communicate

outside of the pre-specified interfaces.

The spatial trading model is used to realize two main objectives: scalability and control-

ling spatial interaction

Scalability is facilitated by limiting the number of object interactions that need be handled.

In the case of Massive, this is limited by the object auras and the aura manager. Since an

object only connects to objects that have aura collisions, the number of interacting objects is

greatly limited. This correspondingly limits the number of network connections needed and

the amount of network resources consumed.

Spatial interaction is controlled using the concept of awareness. An object’s awareness of

another object in the system specifies the relative importances of that object. The more atten-

tion given, the more resources will be devoted to that object’s representation in the virtual

environment.

Awareness (and auras) are influenced through the concepts of focus and nimbus. Focus

quantifies the observer’s allocation of attention. Nimbus quantifies the observed object’s ob-

servability or the degree to which it is interesting. By combining these two aspects of the

interacting objects, the spatial trading mechanism arrives at a decision about the relative im-
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portance of interacting objects. If the relative importance is high then more resources are

allocated to those interactions. More details about this innovative interaction model can be

found in the published papers[BBFG94, BG97, BF93].

3.1.3 MASSIVE3

Data sharing Object-based shared data service

Programming model Agent processes communicating through shared

environment data structure

Resource handling Resources are part of application

Networking Reliable and unreliable multicasting

key techniques HIVEK consistency model, Agent processes, event

queues and filters

3.1.3.1 Introduction

MASSIVE3 is the 3rd generation of the MASSIVE Project. It builds upon the experiences

of the team developing MASSIVE1 and MASSIVE2 as well as shared data consistency work

from Reading University[RS97].

MASSIVE3 is based upon the HIVEK project. HIVEK provides a shared data system that

was created specifically for the needs of CVEs. In addition to the shared data service, there

are other related services for supporting CVEs. This includes a naming service, simple ren-

dering, and interaction toolkits, basic networking, object serialization, and distributed audio

capabilities [Mas, Gre99a, Gee00, Gre99b].

3.1.3.2 Agents and Environments

The HIVEK shared data system is based upon two fundamental elements: Agents and

Environments. Agents represent one main thread or process in the system and environments

encapsulates the concept of shared data. When the system is running it consists of many

agents communicating using one or more Environments. The Agents can be running on any
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number of different machines that are all sharing the distributed environment(s). All inter-

agent communication is done through the shared environment data structure.

HIVEK environments can be thought of as a shared database of the "environment" of a

virtual world. Environments are structured as a tree (potentially only a partial tree) of typed

data. The tree structure is similar to a scene graph without the geometric detail. The basic

data types that are available include transformations (entities), geometry files, switch nodes,

and text attributes. There are also more advanced data types such as object trajectories, event

filters, boundaries, links, and update requests.

Agents access and modify the Environment using an Environment API. Agents use the

Environment API to read items from the environment and iterate over the entire contents of

the environment. To modify the environment an Agent uses the Environment API to create

an update event object. Event objects are used to represent all database changes. The event

objects supported by the system include: add, update, and delete.

When an Event object is created it is immediately placed into two queues, the sending and

the pending queues. The sending queue contains change events that need to be sent to other

nodes in the system. The pending queue contains change events that have yet to be applied

to the local Environment. The queues are both flushed periodically when the system is ready

to process the events.

One ability the event queues provide is that they can be modified to customize the be-

havior of the system. Custom event processing models can be implemented by Agents that

directly access and update the event queues. Additionally developers can add filters the event

queues to modify the way events are processed in the queue and passed on to the rest of the

system.

In addition to the event queues, HIVEK also maintains a system clock for each environ-

ment. This clock is synchronized to a central clock and allows event objects to specify time

constraints. The clocks are synchronization using a periodic time-stamp exchange method.
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3.1.3.3 Sequencing

Total ordering of operations on data items is implemented using sequencers composed of

a two-part numeric sequencer. The first value is incremented when a reliable update is made

(this includes ownership transfers and deletions). The second value is incremented when an

unreliable update is made and is also reset to 0 when the first value is incremented.

The sequencer is also used to enforce event sequencing. Event sequencing enforces that all

mandatory updates are applied in order in every environment which handles them. Alterna-

tively, optional updates are ignored if they are older then the current sequencer but they are

still never applied out of order. The sequencer is part of any ownership transfer to guarantee

that all pending updates are applied correctly at the new controlling node.

The sequencing system also allows for a very flexible method to specify addition opera-

tion ordering. Each update event may specify a set of events which must precede it (using

item sequencers). Normally this only includes the standard sequencers. But by specifying

dependencies upon other items sequencers, the sequencing of changes can be made explicit

within the shared data structure. These explicit dependencies can be used to implement a

variety of constraints including causality constraints.

3.1.3.4 Data consistency

HIVEK has very flexible support for distributed data consistency. The method used is

a conservative method based upon a single transferable ownership per data item. All data

items have an Agent that owns them and a data item can have only one owner at a time.

Requests for ownership transfers are explicit events within the system and can occur at any

time. The processing of ownership requests is based upon the current locking state.

HIVEK supports three different data locking methods – soft, hard, and control. The nam-

ing of these lock types is based upon how they respond to and process ownership requests.

Soft-locks give away ownership upon receiving any ownership request. Hard-locks and

control-locks never give away ownership upon receiving a request but may perform other

processing on behave the requester.
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Control-locks differ from hard-locks in that they signify to other agents that the owning

agent may respond to remote update requests on the object. An UPDATEREQUEST is an Even-

tObject that requests the owning agent changes the value of an object to a requested value.

Upon receiving an UPDATEREQUEST the controlling Agent can choose to honor the request,

ignore it, or modify it depending upon any local constraints it wishes to impose on the data

item.

Centralized updating By making use of update requests, HIVEK allows a form of cen-

tralized updating. There are two supported forms of centralized updates (one for unlocked

items and another for locked). In both cases instead of updating the object directly, an Agent

requests an update by creating an UPDATEREQUEST event which includes the new desired

state of the item. This is considered a centralized approach because the requesting Agent

never acquires ownership of the object. Instead they treat the current owner as a centralized

“server”.

When an UPDATEREQUEST is received by the owner of an unlocked item, the current

owning agent will apply the change and generate a new update event. If the owner receives

multiple UPDATEREQUESTS, the updates occur in the order that they were received.

When an UPDATEREQUEST is received by the owner of a control locked item the request

will not be automatically applied. Instead the owner may apply additional constraints to the

request and then apply it or ignore the request entirely. For example the owner may restrict

the position of an object based on some physical constraints in the environment. In this case,

the UPDATEREQUEST is ignored and the owning Agent creates a new event that partially

implements the requested change.

Ownership transfer methods When updating items using the non-centralized approach,

the system must transfer ownership between the Agents in the system. The normal method

of ownership transfer is a need-based transfer. When an Agent needs to update an object

but does not currently have ownership, it requests the ownership from the current owner in

the system. If the ownership request is satisfied, then the Agent can update the object imme-



www.manaraa.com

64

diately otherwise the change request fails. Even if the Agent requesting ownership has the

request granted, it must wait for a minimum of the round-trip delay time in communicat-

ing the request with the current owner. This time directly impacts the perceived interaction

latency in the system and should be decreased if possible.

An alternative designed to decrease the latency is to combine the ownership request with

the first data update. Upon receiving this type of ownership request, the current owner can

choose to send out the first data update immediately and then transfer ownership to the

requestor. This allows other Agents in the system to see the pending update faster then in the

normal on-demand ownership request method.

Another alternative for reducing latency involves predicting ownership requests. If an

application can accurate predict the need for future ownership, then the it can request own-

ership before actually needing it. This method relies upon application specific prediction

methods, but when applicable it can greatly reduce the perceived latency in the system.

The primary disadvantage of using a predictive approach is that as mis-prediction can

be expensive. An unneeded ownership transfer can waste system bandwidth and resources,

but more importantly it can actually increase latency in the case where another Agent needs

ownership of the object.

Advance communication When future changes in the system are known ahead of time

(ex: a deterministic change), it is possible to make use of advance communication. Ad-

vance communication sends the change event with an associated minimum delivery time.

The change of the item is delayed until that delivery time is reached then the change is en-

acted in all Environments in the system. Advance communication can be implemented as an

additional causal constraint on the event object.

Wait for ownership mode The Environment API also supports a "wait for ownership"

mode that accumulates change requests until an ownership change takes place. This allows

the system to proceed without waiting for an ownership response to be processed.
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3.1.3.5 World structure

Environments are represented using locales. A locale specifies a local coordinate system

and may represent a region in the virtual world (ex: room, building, world). Locales can have

boundaries which are methods of linking to other locales in the system. These boundaries

allow locales to come together to form larger virtual worlds.

In addition to having a main environment for a locale, there may be other environments

that represent a partial or simplified variant of the same locale. These variants may be au-

tomatically or dynamically updated. None of the associated documentation we have found

describes exactly how these additional environments could be used but it is an interesting

idea none the less.

3.1.3.6 Application development

Applications are written using the Environment API to create, manipulate, and monitor

items within the environment. The development model is based on responding to events

within the environment. For example responding to the presence of a user by updating the

state of an object in the environment.

User interaction is based primarily upon mouse interaction. The viewer uses a mouse to

support basic navigation and gives feedback on current state (i.e. direction, movement con-

straints, etc). The user is expected to interact with the application using direct manipulation

of virtual objects. For example, moving the mouse over an object, clicking on it, and then

dragging it to a new location.

3.1.3.7 Persistence and logging capabilities

Persistence is supported by application convention. “Well-behaved” applications start

by loading their initial state from a file on disk. During execution, this file is periodically

updated with the current state of the application. When the application has been unoccupied

for a predetermined amount of time, the application should save the current state to the file

and exit. The application then has to be restarted to reload the world. To support easier
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startup, MASSIVE3 has support for automatically doing this in response to a name server

request from a new client.

The system also supports event logging. All events for a locale can be recorded to a disk

log so they can be played back later to recreate the environment edits. The system supports

replaying these events so they can be paused, time varied, reversed, and restarted at any point

during execution.

3.1.4 Deva

Data sharing Object-to-object communication

Programming model Communicating entities using message passing

Resource handling Resources are located on the server

Networking Reliable networking

key techniques Subjectivity and environmental entity properties

3.1.4.1 Introduction

The Deva project is a framework for distributed VR applications[PCMW00, Pet99, CP01].

It was created at the Advanced Interface Group and the University of Manchester by Steve

Pettifer. Although it can apply to VR in general, its main uses have been for desktop-base

collaborative VR systems.

3.1.4.2 Metaphysical

Deva focuses on the metaphysical representation of the virtual world. Deva proposes that

the world should be represented using a "metaphysical framework". This framework is re-

sponsible for providing a mechanism for extending, altering, and managing the properties of

objects and the world around them. Additionally the framework should allow the modeling

of the effects that the objects and the world have on other objects within the world.

Therefore its main focus is on how to represent the fundamental compositional aspects of

the virtual world. This includes how to represent entities in the virtual world and how to rep-

resent both the common and unique properties of those entities. Deva also includes methods
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for representing universal laws or constraints on the entities in the world. For example how

to model a rock and the fact that a rock has mass that the law of gravity governs to make the

rock fall.

3.1.4.3 Structure

• Presentation

– Client view of the environment

– Subjective presentation (perception)

• World model

– Underlying world simulation

– What is going on "within it"

3.1.4.4 World model

The Deva world model is "based on a particular interpretation of our experiences of the

everyday world". The world model is based on breaking the world into environments which

contain entities. This corresponds to standard terms of "places" that contain "things".

The language of Deva "embodies the idea that many of the properties of an object in our

real world can be seen as being the result of an interaction between the object and its sur-

roundings".

The Deva system focuses on the concept of a world model as opposed to a programming

model. In the Deva world model, the world is represented as a pool of inter-related entities.

The combination of all the entities in the world model form the actual environment that the

user perceives. In this model, applications are simply represented as sub-sets of the world

model made up of application specific entities.

Entities can represent objects in the virtual world, properties of an environment, or ab-

stract programming concepts. The entities are objects made up of attributes and a callable
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interface. The attributes hold state information about the entity. The interface defines a set

of methods that other entities can call to communicate with the entity. These methods are

primarily used to manipulate the state of the entity held in it’s attributes.

Deva allows entity attributes to come from multiple sources (for example from the object

and from the room the object is in). Deva implements this using entity property chaining.

This is a technique where by entity properties determine authority and constraints on the

entities.

A unique capability of Deva is that it allows entities to be extended dynamically with new

attributes and behaviors. Deva encapsulates a collection of methods and attributes related to

a single concept into a component. Deva can graft these components onto an existing entity to

add new capabilities to already existing objects.

Deva defines several sources where entity definitions and extensions can come from.

Innate attributes and behaviors are entity aspects that are always tied to the particular en-

tity type. These are the characteristics of an object that are normally thought of when

defining a new object. For example a ball always has a radius and a color.

Inherited Entities can also inherit behavior and properties that are common to a group of

entities. These are similar to innate aspects except that they are shared by a common

group of entity types. An example of this may be that all physical objects have an

attribute that defines their current position in the world. This attribute could be defined

in a common entity type that all other entities inherit from to get this attribute and

associated interface methods.

Imbued Entities can have behavior grafted onto them by the environment they are within.

This allows the environment that an entity is within to influence the characteristics of

an entity. For example an object that enters a Newtonian world environment may have

a component grafted onto them that defines the attributes of mass, velocity, and accel-

eration as well as their associated interface methods. This component then forces the

entity to “behave” correctly based upon the laws of Newtonian physics.
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The ability of the environment to influence the behavior and definition of an entity is

one of the most innovative aspects of the Deva system. It provides a potential solution to

the very difficult problem of how to effectively define rules and constraints that govern

specific areas of a virtual world.

3.1.4.5 Execution environment

The execution environment of Deva integrates entity behavior and interaction code within

a single environment. Within this environment, the programming model is based upon com-

municating entities. All entities can retrieve and exchange references to other entities within

the system. Using these references, entities communicate remotely by calling the methods

in the entity interface. This communication system is based on an internal message passing

system that makes the entity communication location-transparent.

The physical distribution of the code in Deva uses a client/server model where the appli-

cation logic code executes on the server cluster. This server cluster is responsible for executing

and maintaining the state of all entities that make up the virtual world. Because of this, the

entire simulation for the virtual world is executing only on the server cluster.

Clients applications only have a subjective view of the current environment. They do

not directly execute the code of the virtual world, instead, the clients have a "subject" object

that mirrors each entity. This subject represents what the entity looks like and provides a

placeholder that the client can use for interaction. All interaction with the subject view of the

entity is reflected back the the server for processing. This indirect method of entity modifi-

cation and interaction can add latency to the system, but simplifies the programming model

used for entity-to-entity communication and processing.

Users are “simply considered to be an entity whose behavior is controlled by input devices

rather than algorithms”. They are represented by standard entities with one entity per user

in the system. The user entities have actions and methods designed to be controlled by input

devices, but otherwise it is just a normal entity in the system. To interact with the system,

a user updates the state of their associated user entity subject on their local machine. These
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changes are then passed on to the server cluster which adds the changes to the currently

executing simulation.

Applications as such are not directly represented in Deva. Instead, applications are “repre-

sented by an entity, environment or collection thereof that affects the behavior of other entities

or environments”. This leads to a rather unorthodox programming model that can be difficult

to use at first.

3.1.4.6 Access Model

Deva has a prototype of an object access model. An access model is a “set of mechanisms

to determine the operations that may be carried out on an object by a given user”. Please note

that these are not security models (this would enforce an access model).

Access models are needed in CVEs to support object ownership and authority. Access

models allow objects to be intelligently managed to make sure that only those users that are

authorized to make use of an object in the environment do so. The access model also allows

different applications to exchange objects in intelligent ways.

The Deva model allows the access control to be constructed by the programmer and at-

tempts to provide an interface that allows users to interact with and understand the access

control system.

There are several components of the Deva access Model.

• Entity: A general resource (standard Deva resource)

• User: An entity that is related to a person

• Key: Entity describing dynamic relationship between user and entity

• Key manager: List of pending requests for validation. Returning new payload for com-

pound rules.

The mechanism used is based upon validating entity method calls. All system users have to

be validated to use the system. Once they are validated, the system key manager can provide

method keys to authorized method calls.
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This leads to the following sequence of events when a method call is made. The first step

of any method call is to query the key manager for the current keys associated with the given

user and the entity they are trying to call. This key is then passed as part of the method call

mechanism. Before processing the method call, the system validates that the key provides

the correct level of access to the entity. If it does not provide access, then the method call is

ignored.

3.2 World representation

In addition to directly programming a CVE, there are other methods for creating CVEs

based on specifying how the world is represented. These specifications do not specify how

the underlying code should implement the sharing and viewing of the world. Instead they

simply describe the virtual world in a way that should allow a variety of possible viewers to

be development.

3.2.1 VRML

The VRML specification defines a method for describing virtual worlds. This section dis-

cusses version 2.0 of the VRML specification commonly called VRML 2.0 [VRM97a, HW96].

VRML was designed for the creation and distribution of web-based virtual environments.

VRML was one of the first efforts to create a standard method of representing virtual worlds

in a way that they could be viewed and used on the Internet as an extension of the world

wide web.

VRML files are viewed using a VRML browser. VRML browsers are customized for view-

ing and interacting with VRML worlds. They are able to load VRML files, parse the contents

into an internal representation, and then present the world to the user. The user can use

the browser to move through the virtual world and to interact with the environment using

normal desktop input devices such as a mouse and keyboard.

The core of the VRML specification a declarative file format for virtual world representa-

tions. This format is derived from the format used by Open Inventor [SC92] to store scene
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graphs. This format is especially convenient because VRML worlds are represented as scene

graphs. The scene graph for the world is composed of a hierarchical set of nodes. There are

nodes for representing physical objects such as spheres, cones, and lights. There are also other

nodes used as containers and structural nodes. There are also some special nodes defined for

advanced features such as hyperlinking and prototyping.

VRML nodes contain fields which hold the data of the node. Each field has an associated

type that defines not only the type of the data, but also the cardinality. For example a sphere

node would have a field of type SFFloat (a single float value) for radius and a field of type

MFFloat (a multi-value float) for center.

3.2.1.1 Programming Model

VRML2 programming is based upon events and routes.

Most nodes contain events. These events are a indication that something has happened

related to the object – for example a field value has changed, the user has selected the object,

or a timer object has expired. There are two kinds of events in the system: incoming events

(inEvents) and outgoing events (outEvents). To enable event processing, the outEvent of one

node is wired1 to the inEvent of another node. When a field sends an outEvent the value of

the event is sent to any inEvents that are connected to it. Upon receiving an event, the inEvent

is set to the value of the sending outEvent that triggered it.

This simple programming model allows for a large degree of flexibility in development.

Most of the programming within a VRML world is based upon animation and response, but

there are facilities for more general purpose types of programming. This more general pro-

gramming makes use of special scripting and sensor nodes that are specifically designed for

creating interactive worlds.

Scripting is supported through script nodes. These nodes are just like other nodes in that

they receive incoming events and generate out going events. They are unique though in that

the node contains code for processing the incoming events before deciding what out going

1VRML uses the term wired to refer to connecting an outEvent to an inEvent.
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events to generate. Developers can specify as many incoming and outgoing events as they

like.

There are several stages in a normal VRML application interaction. First there is a trigger.

A trigger is an item in the world that generate the event that starts the interaction. In most

cases, the trigger is a sensor that sends an event based upon user interaction. The next stage

is logic processing. This stage involves running script code to process the trigger event and

potentially perform extra calculations before deciding upon a final event to output or action

to take within the system. In most simple interactions this stage is not needed.

The next stage is a processing stage. In VRML documentation this is commonly broken

up into two separate stages based upon timer nodes and engine nodes. The processing stage

is responsible for taking the output from the trigger or logic and then controlling some final

output that is used to update the scene. The processing stage allows the system to have a

form of continuous processing that is triggered from the originating event. The timer node

combined with other processing nodes can be triggered to keep updating the environment

for some set period of time.

The final stage is the target. The target is the final node whose fields are being changed by

the given interaction. Once the field is updated, the node will reflect the new information in

the next rendering.

It is important to note that the communication between each stage of the interaction pro-

gramming is still just events and fields. This is partially limiting in the way programming can

be done, but it provides for a uniform and flexible interface between the components in the

system.

3.2.2 Living Worlds

Living Worlds (LW) is a specification of a proposed standard for distributed object inter-

action in VRML 2.0[Liv03]. The goal of LW is to define a set of VRML 2.0 conventions for

supporting environments that are interpersonal and interoperable. The LW group defines inter-

personal as meaning “applications which support the virtual presence of many people in a
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single scene at the same time: people who can interact both with objects in the scene and with

each other”. They define interoperable as meaning “that such applications can be assembled

from libraries of components developed independently by multiple suppliers and visited by

client systems which have nothing more in common then their adherence to the VRML 2.0

standard.”

The LW specification address the following issues[Liv03]:

• coordinating the position and state of shared objects

• information exchange between objects in a scene

• personal and system security in VRML applications

• a library of utilities and some workarounds for VRML2.0 limitations

• identifying and integrating at run-time interaction capabilities implemented outside of

VRML and its scripts

It is important to note that the LW group is not trying to create a new standard but is trying

to evolve the current ones to add support for CVEs. Because of this, the LW specification

builds upon VRML 2.0 instead of trying to create new mechanisms. In a similar fashion to

VRML, the LW specification does not specify designs. LW only proposes a standard for how

to describe collaborative spaces. Application developers are free to use any design to write

applications that can view worlds specified using the LW specification.

The LW group believes that shared CVEs will not be designed as single coherent envi-

ronments, but will be made up of components that are combined ad hoc as users extend and

move around in the system. These components may not have been designed together or even

tested together before they must interact with each other at run-time in the system. Because of

this the components will need to have standard interfaces that allow them to work together.

The LW specification is proposed to be this standard interface between the inter-operating

components. The specification will allow shared environments to be constructed by specify-

ing them using VRML and associated extensions. This specification allows all the components
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Figure 3.5 Living Worlds model

in the system to interface with each other to form a coherent shared world. The LW group be-

lieves that the evolution and creation of a shared cyberspace relies on the creation of reliable

infrastructure.

scene sharing: Scene sharing captures the infrastructure for coordinating events and actions

within the shared environment. Scene sharing allows multiple clients to interact

with each other and make modifications to the current scene. It also provides the

support for allowing objects to communicate with each other and exchange data.

security: There are many potential security problems introduced in large distributed sys-

tems. The security requirements for LW include concurrency control, conditional

access, and user authentication.

3.2.2.1 Conceptual framework

LW specifies a general conceptual framework for implementations of the standard. The

framework does not specify a design, it is only meant to be a guide for how to logically

partition the system functionality into conceptual components. The standard can then define

the interfaces between these components to allow the actual implementation components to

come from independent suppliers.

The LW conceptual framework is show in Figure 3.5 on page 75. The components of the

framework are:
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User Interface This component accepts all user input and renders the virtual world. This

component handles mouse, video, and sound in addition to the standard windowing

system details such as widgets, menus, and dialogs. It provides all methods provided

by the system to allow it’s user to interact with the system.

VRML browser This component is responsible for loading the VRML world and provid-

ing an interface that other components use for all changes and updates to the run-time

world.

World VRML virtual world which defines the scene and any associated script nodes.

External Application any external code or application that interacts with the VRML browser

to provide some external functionality.

Multi-User Technology (MUTech) a component proposed by LW to implement sharing across

the network. This component provides all the networking facilities needed for multi-

user interaction beyond that provided by the browser.

3.2.2.2 System architecture

LW builds on top of the structural relationship mechanisms already present in VRML.

These mechanisms consist of Nodes, Routes, Events, and Scripts. Within these mechanisms,

the LW specifications sets out to define methods for declaring the relationships of a shared

virtual world.

The foundation of the LW architecture is the addition of two new VRML nodes: ZONE and

SHAREDOBJECT. These nodes extend several of the concepts of VRML to allow for shared

worlds.

Zones Standard VRML has two high-level grouping mechanisms: worlds and scenes.

VRML worlds are composed of linked scenes. A scene groups a set of related VRML objects.

The objects in a scene must be geometrically bounded and a scene must allow for continuous

navigation (i.e., no links need to be followed).
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Figure 3.6 Living worlds architecture

LW extends these grouping mechanisms by allowing scenes to be further subdivided into

ZONES. A ZONE is a contiguous portion of a scene that contains objects that are to be shared

between clients. Zones can be contain standard VRML objects but they are primarily com-

posed of SHAREDOBJECT’s. (see Figure 3.6 on page 77)

LW uses Zones to distinguish areas of a scene that are to be shared. Zones define a range

of control for a MUTech. A MUTech is associated with each zone and it is the responsibility of

that MUTech to control the sharing of the objects in the Zone. Zones can be used by the MU

Tech to optimize networking and handle area of interest management.

Shared Objects A shared object is any object whose state and behavior is shared across

multiple clients. For an object to be distributed it has to be added as a child of a Zone. Once

it is added, it is the responsibility of the containing Zone to facility object distribution.

Sharing an object in LW means keeping multiple instances of the object synchronized

across multiple clients. This is done by distinguishing between object sources (Pilots) and

object replicants (Drones). A shared object is composed of:

Pilot The pilot is an instance of a SharedObject whose state is distributed to the other nodes.

Drone A drone is an instance of a SharedObject that replicates the state of the pilot instance.

The Pilot of a shared object is the single instance that controls the true state of the object. There

can only be one Pilot for each shared object and when the state of the pilot object changes,



www.manaraa.com

78

those changes are distributed to all of the shared object’s Drones. Remote nodes can use this

Drone instance of the shared object to examine the current state.

When an object needs to communicate with a remote shared object it uses the local drone

associated with that shared object. When an event is sent to a drone, the MU Tech routes the

event over the network to the object’s pilot. The pilot is then responsible for processing the

event. This may involve updating the object’s state or sending a new event to a local drone

object. In either case the changed triggers another message that will be routed through the

network to all affected shared objects.

MU Tech The MU Tech links the objects in the local scene graph to the external net-

working implementation responsible for distribution. It encapsulates the functionality for

tracking and synchronizing shared objects. It is also responsible for distributing the state of

shared objects and controls the access to the object behaviors. The MU Tech provides these

abilities using VRML wrappers for the relevant node types. These features are added to the

VRML system transparently so the specified virtual worlds to not have to explicitly handle

distribution.

Example Consider the example shown in 3.6 — there are two shared objects: SharedOb-

ject#1 (SO1) and SharedObject#2 (SO2). SO1’s pilot is on client A while SO2’s pilot on client B.

When SO1 needs to communicate with SO2, the SO1’s Pilot object on client A sends a event to

SO2’s Drone object also on client A. SO2’s Drone then routes this event through the MUTech

to SO2’s Pilot object on client B. SO2 then processes the event and updates any local state

needed. Effectively as far as the object’s on any client can tell, they are communicating di-

rectly with a “normal” object. It is the MU Tech and the associated Drone and Pilot code that

takes care of all the networking details.
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4 Research Overview

When we set out on this research, we look to previous work for inspiration. We found

some interesting ideas, but there was no system that solved the core problem of provided a

unified world model that could be fully distributed and allow for user extension. What we

found instead was a number of interesting ideas that could be built upon to create a new type

of software architecture for distributed systems.

4.1 Research Methodology

From the inception of the idea for this research, we realized that our ideas would only be

relevant and proven if we could show that they could be realized in a software system. To

many previous systems sound good in theory but failed to live up to expectations when used

for real applications. Because of this we used used an exploratory research methodology val-

idated through implementation. We investigated proposed solutions to the research issues

through an iterative research process of design, implementation, and evaluation. The evalu-

ation used test-case application scenarios designed to mirror real-world requirements. Based

upon implementation and experimentation with these test cases, the design was iteratively

refined to more completely address the project’s research issues.

The test-case scenarios were key to this method because they provided a way to evaluate

current progress. At any point we could use the test-cases to evaluate the capabilities that

existed in the system and discover new issues that needed to be addressed. We believe that

without these test cases there would have been no way to effectively evaluate and revise the

system designs to ensure that they behaved correctly and successfully.
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Figure 4.1 Subsystems and layers of Continuum

Development Methodology Throughout the design, implementation, and refinement

we made a best effort to follow a standard software development methodology to manage the

project. We did this to help keep the project focused and organized. Based upon our previ-

ous experience we decided to use the Extreme Programming (XP) development methodology

[Bec01].

This methodology is built upon the ideas of continuous feedback and incremental devel-

opment. This supported our research needs by being flexible enough to allow for experimen-

tation and rapid changes in direction of core designs. It was lightweight enough that it did

not get in the way but instead promoted creativity and exploration.

In retrospect, we do not believe this research would have been nearly as successful or

progressed to it’s current state without the use of XP development practices. The software

ended up being so complex and requiring so many rapid changes in design and development

that without a solid development practice being in place, the software would have taken

much longer to develop and we would not have been able to try so many various options.

4.2 Architecture Overview

The architecture of Continuum is based upon a layered system. Each layer makes use of

the layers below it to provide additional capabilities to users of the higher levels. By splitting

the system into layers we were able to compartmentalize the complex array of capabilities

needed for a CVE. These layers are shown in Figure 4.1 on page 80 and described below.

Operating System: At the lowest level, Continuum sits on top of an operating system ab-
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straction layer that we have written called the VR Juggler Portable Runtime (VPR)

[vpr06]. VPR has been developed as part of the VR Juggler project [vrj, Bie00, BJH+01],

and it now serves as the basis for most cross-platform software written using VR Jug-

gler. It is made up of platform-specific subsystems hidden behind cross-platform C++

interfaces. The subsystems can be changed at compile time allowing code to be moved

from one platform to another without modification.

Networking Layer: Plexus — The Plexus networking layer provides the data communica-

tion and networking support needed throughout the system. It provides a multicasting

message-based communication method using peer-to-peer communication.

Data Distribution: DSO — The DSO library provides a distributed shared memory abstrac-

tion based on distributed objects. This gives the other layers and applications a simple

way to shared data with other nodes in the system.

World Model: Terra — The Terra library unifies the system with a common world model.

This model is the basis for application data sharing, code composition, and resource

sharing.

Viewer: lglass — The looking glass (lglass) layer brings the other layers together in viewer

applications. Much as a web browser provides an interface to viewing and interacting

with the world wide web, the lglass viewers gives users a way to interact within a CVE.

We have implemented two viewers in lglass, one for the desktop and another for VR

systems.

In the remainder of this document we will discuss the subsystem and libraries that make

up these layers in much more detail. For each subsystem we will describe the conceptual

model used to describe the capabilities provided, the software design used, the implemen-

tation details, and a brief discussion of the issues encountered and outcomes of the project

as is pertains this this subsystem. After describing each subsystem we will close with a final

section describing our conclusions.
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5 Networking Layer

The networking layer of Continuum is called Plexus. Plexus is a network data routing li-

brary that operates at the application level on top of the TCP/IP stack. The focus of Plexus is

to provide a common low-latency data networking layer for use within virtual environments.

Plexus provides CVE applications with an abstraction that meets their common networking

needs. By using a networking abstraction it allows developers to create higher level applica-

tions on top of Plexus while still allowing Plexus to evolve and improve in the future. This

proved especially beneficial during our work because it let us to create a bare-bones version of

Plexus initially that allowed us to continue working on the higher level tools without having

to fully optimize and refine Plexus.

Plexus is not strictly limited to use with virtual reality (VR), but its design focuses on

the needs of VR. Those needs include soft real-time responsiveness to enhance the users’

suspension of disbelief.

5.1 Requirements

In CVE applications it is very common to communicate updates from one node to all

the others in the shared environment, or at least to a subgroup of users that is interested in

the update. For example, when one user picks up a virtual object and starts moving it, this

update to the object’s state needs to be sent to all the other users in this shared environment.

This type of 1-to-N communication is an example of data multicasting. Multicasting network

distribution is the process of sending a single data message to an interested group of listening

entities on a network 1. Because multicasting is a fundamental communication method in

1 See multicasting on page 24.
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CVEs, it is the primary communication model supported by Plexus.

Plexus provides multicast networking using a peer-to-peer distribution network. A peer-

to-peer network is one where any party can initiate a communication session and connect to

any other party. In a peer-to-peer network, all parties are equal in that they all run the same

software that can act as both a sender and a receiver of information. In the case of Plexus, what

this means is that every user in the CVE is running the same client software to communicate

on the Plexus network. There are no centralized server nodes controlling the communication,

and there is no need to connect to a central location. Instead a user simply connects to another

user in the system and they are immediately a part of the entire Plexus network.

Plexus uses the peer-to-peer model because it provides several significant benefits to users,

administrators, and developers. One of the primary benefits is network robustness and added

fault tolerance. In a peer-to-peer network, there is no single point of failure. Any node can go

down and the other nodes will continue to work as normal. By allowing every client to run

the same software, it eases the development burden since there is only one code base to create

and maintain. Peer-to-peer networking also makes software deployment easier because the

same application code can be used for user clients, data servers, and hybrids in between these

two extremes.

Plexus is targeted for low-latency communication, and hence, the goal of this project is

to minimize the latency of distributed message passing. There are three main resource con-

straints on distributed message passing systems: CPU utilization, bandwidth, and latency.

Available processing power is increasing constantly [Moo65]. Every few months, CPU speeds

increase to give more processing power to use in applications. This does not imply that a soft-

ware tool should not be optimized to make the best use of the resource but rather that there is

no (known) hard limit. Bandwidth, similar to CPU resources, has been increasing exponen-

tially, and it appears that this trend will continue for the foreseeable future. Latency, on the

other hand, is a resource constraint that has a hard limit. Communication latency is limited

by the speed of light. This is a hard constant that cannot be avoided. Moreover, the local area

network type (e.g., Ethernet, Fast Ethernet, wireless), the backbone type (e.g., T1, T3, OC-12,



www.manaraa.com

84

etc.), and the physical distance between sites contribute further latency.

Because latency is one of if not this most significant factor influencing the responsiveness

of CVE systems, the design of Plexus focuses on reducing latency above all else. We work to

achieve this by using soft real-time techniques and basing our design decisions and imple-

mentation choices on what will best reduce the latency of messages in the system. From the

perspective of real-time systems, the deadline in the Plexus system is the time by which the

network must deliver the message in order to avoid the side-effects of a high-latency system

such as: jitter, distractions during collaboration, and loss of suspension of disbelief 2. Since

these effects are observed with differing severities with increasing latency, the system is a soft

real-time system where the lower the latency of a message, the more valuable the message is

to the system.

One way Plexus attempts to minimize latency is to allow the network to adapt dynami-

cally to the current constraints so as to minimize latency in any way possible. Through dy-

namic network analysis, we Plexus attempts to determine where bottlenecks occur in the data

flow. With that information, Plexus will try to find faster routes for the packets.

The routing used in Plexus does not try to replace the hardware routers and gateways that

make up the Internet. Instead, it attempts to look at the flow of data at a higher level than

the routers. Whereas the routers are concerned only with the next hop for a given packet,

Plexus can look at the virtual connections that make up a Plexus network and make routing

decisions based on that view.

5.2 Model

The model provided by Plexus combines these requirements with the domain specific

needs of CVEs to provide a communication model with the following guarantees.

• There are a set of nodes N and,

• A set of possible multicast addresses M,

2See interactivity on page 31 for more details.
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• ∀n ∈ N, n has a set of subscribed multicast addresses Mn ⊆ M,

• n can only send messages to a single address d ∈ M at a time, and the message will

only be received by the set of nodes Ndalso subscribed to that multicast address where

Nd = {∀n ∈ N, ∀d ∈ M|d ∈ Mn}

• Source ordering [WZ99] is guaranteed for all messages delivery

Messages in plexus are addressed by providing the following information:

Field Description

Type multi-cast or direct

TTL Allowed time to live measured in number of hops.

Domain A GUID defining the primary domain that this message

belongs to. This is the application or library that should

care about this message.

Domain Group A GUID that defines the sub-type for this message within

the primary group.

Source Address of the plexus node sending the message.

Contents The data content of the message.

5.3 Design

A plexus network is made up of a set of nodes that share data by passing messages to each

other (see 5.1). Each of these nodes is a hub into the shared Plexus network and has a unique

address on the plexus network composed of a local IP address and port number. A single

Plexus node is directly connected to some other number of Plexus nodes called FRIENDS.

When a node sends a message or receives a message in the network it does it through its

friends using the local node’s software ROUTER. It is the router that handles the actual mes-

sage passing for the local node and it is the router’s responsibility to guarantee the delivery

of messages to every node that is interested in them.
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Figure 5.1 Network overview and deployment

Messages are delivered based on their multicast address. Once a message arrives at a

valid destination node the local router delivers the message to any local MESSAGE HANDLERS

that have been registered. Local applications and libraries receive messages by registering a

custom message handler to intercept and process relevant messages. Message handlers can

filter messages based on the message type and the destination address group.

An application that wants to communicate with a remote instance of itself creates a mes-

sage, sets the message address to the multi-cast group the application is using, and finally asks

the router to send the message. On the receiving side an application specific message handler

must be registered to handle messages with that addressing and message type. It is then the

responsibility of this message handler to pass the message on to the remote application.

5.3.1 Routing

To provide efficient methods for routing, Plexus allows pluggable routing algorithms that

may be selected at run-time. These algorithms can exhibit dynamic routing behavior in and
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of themselves through such techniques as network introspection and heuristic algorithms.

By harnessing these dynamic techniques, we allow for the future development of powerful

routing algorithms that minimize latency on the network to ensure that the users of the VE

are not adversely affected by the introduction of network latency.

The current routing algorithms are all based on the concept of a “friend” relationship in

the network. As described above, this type of relationship means that all nodes have a set

of friend nodes that they communicate with directly. When a message needs to be sent to a

node that is not a direct friend, the routing algorithms make use of the idea of sending the

message to one or more friends and trusting that they will route it correctly to arrive at the

correct destination. The process will repeat recursively until the message passing is complete.

This method of using friends to pass messages is commonly used in peer-to-peer network-

ing. It is useful because it allows for simple algorithm implementations that provide a high

degree of redundancy and reliability. Unfortunately it can also lead to using more commu-

nication and associated resources then may be strictly needed. For our needs this is not a

significant limitation because we are primarily concerned with decreasing latency. In gen-

eral friend networks do very well for decreasing latency and some dynamic algorithms can

further improve the latency by taking advantage of small world behavior in friend networks

[WS98].

In the future, more advanced routing algorithms could be developed to further improve

performance. We are particularly interested in parent-child, clustering, and artificial life rout-

ing methods. A parent-child routing method could try to automatically organize the network

nodes into a shallow hierarchy. If this hierarchy is based on areas of interest, latency, or

network performance the it may be possible to use it to direct messages more optimally. Sim-

ilarly a routing algorithm based on dynamic clustering could increase performance by trying

to group communicating nodes into small tightly connected groups withing the larger net-

work. The idea here is that if the groups are formed based on area of interest then messages

can be routed quickly to only those nodes that have a direct interest. A final idea we have for

dynamic routing is to use artificial life and evolutionary algorithm techniques to automati-
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cally reorganize the network for more optimal performance.

We have experimented briefly with some of these techniques, but we have not created a

fully working version. As a result of reviewing the current network literature we believe that

ad hoc networking has much overlap with our work in this area and could prove to be a great

source of ideas and inspiration in the future. We leave further experimentation in this area as

future work.

5.4 Implementation

As described above, a Plexus network consists of a set of peer nodes that share data

by sending messages to each other. The current implementation only allows one node per

address-space per peer. The reason that there is one node per address space is that we do not

have a standard way to access shared memory in a cross-platform way. In practice having

a node per address space is not a significant issue because there is usually only one Plexus

application per machine. In the case where there are multiple nodes on the same machine,

Plexus will function correctly, but there will be more local communication and resource con-

sumption than would strictly be needed.

User applications and high-level libraries interact with Plexus through the interfaces of the

node and router classes. They can use these interfaces to configure the network, connect and

disconnect from other nodes, send messages through the network, and query the status of the

system. The messages can be normal Plexus messages or can be application specific messages.

In either case, the interface to the routers is the same. The messages can be multicasted to a

group of listeners on the network or they can be targeted directly at one destination node.

5.4.1 Router

As described previously, each node has an associated ROUTER. This router is responsible

for passing messages on the network and for handing off the messages to local objects, called

message handlers, that are interested in processing the received messages (see Figure 5.2 on

page 89).
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Figure 5.2 Plexus Node and Router classes.

The router makes use of a helper object called a REACTOR. It is the job of the reactor to

efficiently multi-plex all the I/O processing tasks and to manage the network connections

in the system. The reactor we implemented is modeled after the reactor pattern [SSRB00].

It is a single-threaded reactor that makes use of platform specific primitives3 to minimize

the processing overhead while simultaneously attempting to maximize the I/O throughput.

We have found this design to work very well and it allows the asynchronous nature of the

networking code to be encapsulated in a single location.

The core of the router is the implementation of the routing algorithm. In Plexus, the

routers implement pluggable routing algorithms using a template method pattern [GHJV95].

There is a single common base class called plx::Router that presents a common interface and

implementation of the base router functionality. This class makes use of several internal tem-

plate methods that are implemented within the actual router implementation that is derived

from the router class (see FloodingRouter in the Figure 5.2 on page 89).

5.4.1.1 Flooding Router Algorithm

The first routing algorithm implemented for Plexus was a basic flooding algorithm [Wit01].

Each message is sent to each Node in the network and if that node has not yet seen the mes-

sage it forwards it on to its friends as well. This routing method results in a rapid flooding of

the network. In the worst-case this can result in a significant amount of un-needed messages

3The primitives used are I/O notification methods such as the POSIX select() call.
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Algorithm 1 Flooding router algorithm

for(each message)
if(haven’t seen message before)
{

Send message to all peers Pass message to message handlers
}

being sent, but in practice the algorithm seems to work very well.

We chose to implement this algorithm first because it is a relatively simple algorithm that

has a straightforward implementation. Ease of implementation was important because it al-

lowed us to have a base algorithm with which to validate the rest of the system. The flooding

algorithm also has the added benefit of routing message with very low latency in small net-

works.

This router is used as a baseline for comparison throughout the system. Because it works

well on small networks it has also served as a good test-bed router allowing for the develop-

ment and use of higher-level libraries and applications. Being able to build upon the Plexus

library while the system is still in development has been very valuable. We have been able

to refine Plexus continually while continuing to develop other software that makes use of the

library.

5.4.1.2 Crawl Flooding Router

The CRAWL FLOODING ROUTER (CFR) was our first attempt at an adaptive router. It is

based upon the flooding router but has some added abilities that allow it to adapt to the net-

work at run-time by connecting to new friends or disconnecting from existing friends based

upon the currently observed network characteristics. This adaptation is guided by maintain-

ing a potential peers list containing a list of peers that are currently under consideration for

connection. The potential peers list maintains a set of metrics for each peer that is currently

being considered.

These metrics include:
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• Ping time: The turn-around time of a ping packet to the node.

• Load information: A set of metrics that reflect how loaded the peer is currently.

• Throughput: A set of metrics that approximates the current data throughput.

• Reaction time: A metric that estimates the amount of time it takes to route a message

through the node.

The selection and connection policies are based upon these metrics. The router uses the met-

rics to decide whether to maintain its current connections, add a new connection, or close a

connection.

Updates to the statistics for the peers occur through a variety of methods. When a node

first connects to a new peer it announces itself to all its new second-level peers (peers of the

new peer). If these peers did not previously know about the new node, then they ask the node

for its current status. Disconnection works much the same way except it is the responsibility

of the peer that the node disconnects from to tell its peers about the disconnection. When

a node gets a notification that another node is disconnecting, it removes the departing node

from its potential peers list.

The CFR also supports updates during execution through periodic updates where a node

tells its peers of its current state. This can either be fully periodic or can include a policy that

only sends the update out when there has been a significant change in the node’s state. The

definition of what is considered significant is configurable. It is also possible for a node to

request an update from one of their peers. This can be important for cases where the node has

either lost the data for a peer or wants to make sure that it has the most up to date information

before it makes a topological change to the network. In all of these cases, the information

policy is fully configurable and is able to change at run-time.

Because such a large number of parameters are collected and the parameters have very

complex relationships to each other and the current system performance it is very difficult

to write algorithms to make good choices based on these values. In the future, we hope

to use genetic algorithms to evolve methods that aggregate these metrics into an algorithm
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that optimizes the network performance. For now, we have implemented a simple heuristic

method that is based upon the ping time metric. The idea behind it is to try to find “close”

nodes on the network and connect to them. The current algorithm does not take advantage of

disconnecting from peers, as we have not had time to fully explore and debug this capability.

5.4.2 Message Handlers

Routers not only send messages to other nodes, they also pass the message to message

handlers that have registered with the router as being interested in processing the messages.

All message handlers are derived from a common base class that defines the interface that

all message handlers must support. The interface consists of two methods: SHOULDHAN-

DLE() and HANDLEMESSAGE(). The router calls the SHOULDHANDLE() method to determine

whether a message is of interest and if it is, then it passes the message to the HANDLEMES-

SAGE().

We are working on a new interface method that allows the handlers to enumerate all

possible message types that they may be interested in. This is needed to allow routers to

communicate information about what messages should be sent to a given node. It will be

needed by more advanced routing algorithms currently under development.

5.4.3 Reactor

The routers make use of a REACTOR to manage the actual network traffic (see above di-

agram). The reactor is an implementation of the reactor pattern [SSRB00] which is used to

demultiplex and dispatch events that are delivered to the router. In this case, the events are

network events such as connection attempts and data ready notifications.

The Plexus reactor works by maintaining a list of the current sockets connected that can

serve as event sources (ServiceHandlers in the above diagram). These socket handles are en-

capsulated in event handler objects that not only contain the handle identifying the potential

event source, but also the event processing code to execute when an event is received. This

allows the event handlers to encapsulate completely the communication protocols and mes-
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Figure 5.3 plx::Reactor classes

sage handling in a single place without having to worry about the details of the actual socket

handling.

The reactor design leads to a system that is high-performance, flexible, and modular. Per-

formance is optimized because the application never has to block or wait for a network con-

nection since it only processes a connection when it is guaranteed to have an event. The

system can optimize throughput because it can always be processing whatever connections

have data at a given time.

This design leads to modularity by separating application level event processing from the

actual dispatching method used. It also allows common event handling components such as

connectors, acceptors, and service handlers to be implemented. The reactor captures the de-

tails of multi-threading and synchronization in a single place thereby simplifying the rest of

the code in the system. This allows for the replacement of the reactor with more advanced de-

multiplexing implementations without requiring changes to the rest of the system. Statistics

Collection

From the beginning of the project, Plexus has been designed to allow for the collection of
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performance metrics and statistics about how the network is performing. The routers, reac-

tors, and service handlers in Plexus are instrumented to collect this information at run-time.

Routers collection statistics about the messages processed, messages dropped, and messages

routed. Reactors collect statistics about that duration of even selection and event servicing.

The service handlers collect information about bandwidth consumption and message latency.

Plexus includes methods to collect this information as basic counts, counts per unit of

time, and continuous rates over time.

5.5 Discussion

In the process of developing Plexus we considered many various options. We weighed

our choices against the needs of CVE systems, what was possible with current software, and

the difficulty of the associated implementation and debugging. Our focus was to create the

best platform we could for supporting the development of CVE applications.

Our previous systems had always been based on client-server based architectures. These

systems worked very well and resulted in easy to understand code but they proved to be too

fragile and limited scalability. Based upon this experience we decided to pursue a peer-to-

peer based architecture with Plexus. Although this made the resulting code more difficult to

develop and debug it has allowed us to create a better overall system. Plexus is now able to

work reliably and robustly in a variety of conditions without a central point of failure. We also

think that this network architecture has lead to improvements in the end-user applications.

Initially we put a great deal of thought into the type of addressing modes to support.

We knew that group addressing through multi-casting was needed but we did not know if

other methods would be needed or how much use the various methods would see in appli-

cations. In the end we found that multi-cast communication was the most important method

to support. We added support for direct message passing, but we did so on top of the multi-

cast communication method. By do this we were able to leverage the existing codebase and

minimize the additional effort needed.

After examining the various design alternatives, we arrived at a solution that supported
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our needs and that appeared feasible to implement. This design could still be further ex-

tended and refined in the future to provide more complete functionality and better perfor-

mance.
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6 Data Distribution

A CVE consists of a large amount of state information that needs to be shared among all

participants of the system. For example the position of an object in the world, its current color,

or information about other users in the environment. All of these are examples of shared state

about an object, or more generally, a shared entity in the CVE. The core of any CVE is a large

shared repository of entities and their associated state. This shared collection fully defines the

entirety of the the shared environment.

Thus one of the most fundamental needs in a CVE is to manage this shared state. It is the

responsibility of the CVE software to provide access to this state information and keep the

data in sync across all participating nodes so all users see a consistent and coherent view of

the virtual environment. If the system fails to keep this state consistent, then at best users will

begin to loose the feeling of being in a shared space and at worst applications based upon this

system will fail to execute correctly.

While it would be possible for a user or other layers of Continuum to use the message

passing support of Plexus directly to keep this state information consistent, we have found

this to be overly burdensome on the developers and users. Instead we provide another layer

on top of Plexus, called DSO.

DSO is a system for managing distributed shared objects and providing a single consistent

interface to developers and users of the Continuum system. The DSO subsystem has many

responsibilities, but the most fundamental of these are: holding entity state information, dis-

tributing updates to all nodes in the CVE, controlling access to entities, and providing data

persistence. We have found that by centralizing all of these capabilities into one subsystem

we derive several related benefits.
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First, it succinctly captures a great deal of the most complex aspects of the implementation

behind a relatively simple facade. Encapsulating the implementation in this way allows the

developers to refine, test, and expand the capabilities of DSO in isolation from the other parts

of the system. The benefits of maintaining this separation of concerns during development

and maintenance have been critical to our development. It is our experience that this has

dramatically increased the speed of development by allowing us to create an extensive auto-

mated testing suite which lets us continually refactor the code as needed and still maintain

confidence that the system keeps working successfully.

A second benefit we have seen is that using DSO seems to decrease the complexity of the

system as a whole. Developers do not have to constantly worry about the myriad of potential

issues involved in using a distributed system. Instead they can focus on writing their code

using data objects that appear to be relatively standard. DSO will take care of the intricate

details of synchronization and distribution for them behind the scenes.

This last benefit translates directly to application developers as well. When a user writes

a collaborative application using Continuum they can make use of a concise object model for

all their data needs. They can rely upon this data working in a distributed manner with very

little worry on their part, thus simplifying application development dramatically.

Because DSO was created to support Continuum, it was designed to specifically target the

unique needs of CVEs. Although we have based some of our ideas on previous work creating

shared memory libraries , we do not provide support for some of the more general mech-

anisms found in these systems. Instead we actively take advantage of the domain specific

behavior and needs of CVEs. This has allowed us to provide additional capabilities and per-

formance enhancements because we know how the library will be used and what constraints

will be most limiting.

6.1 Design

There are two main components in the design of DSO. There is the object model used for

storing shared data and shared memory subsystem responsible for exchanging messages with
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other nodes to make sure everything remains synchronized. In this section we will discuss

the design of each of those components and how they fit together to form the DSO subsystem.

6.1.1 Object Model

We know from previous work that it is critical for the object model of DSO to provide

extensive support for run-time addition of types. A CVE system will not know ahead of

time what types a user in the collaborative space may want to use or what objects it will

need to handle. In many cases users may introduce a new object of a type that is completely

unknown to many of the nodes until it was added to the environment. When a new type is

encountered the system must be able to proceed without interruption and handle this new

type transparently. Although some systems try to add this support by dynamically loading

new binary code at run-time we have found that this does not scale and can lead to a very

fragile system. Instead we focused on designing a system with run-time extension capabilities

in mind from the beginning to allow the types to be added and successfully handled at any

time during execution.

Providing object introspection and type reflection capabilities is equally as important for

a CVE. Because new types are being continually added to the system, the entire subsystem

must handle objects using introspective interfaces so it can work with any objects in the sys-

tem. For example the system may not always know the full type information of a shared

object and it should not be required to know this information to simply process the messages

needed to exchange object information. By providing a reflective interface, DSO and applica-

tions written using it can automatically adapt to whatever objects are in the system and use

introspection to access the properties of the objects without having pre-existing knowledge of

an object’s type.

To provide these needs, DSO stores data using a property based object model [Rei02, FY98,

vR06, Fow97]. The primary concepts that make up the DSO object model can be seen in Figure

6.1 on page 99. The technical realization is a bit more complex and is shown in Figure 6.2 on

page 99.
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Figure 6.1 Concepts in the DSO Object Model

As can be seen in the diagram, the fundamental type in this model is the PROPERTY.

A Property contains the data for a single piece of tracked information in the system. For

example a property may define the color of an object, it’s position in the scene, or some state

information associated with that object in a simulation. Multiple related properties are held

within a PROPERTYLIST. Properties in a property list are looked up either by name or by

index.

Both Properties and PropertyLists have associated type information. In the case of a prop-

erty, the type information is held in a PROPERTYTYPE. A property type specifies the data type

for the property, the name of the property, the cardinality for the property. The allowed data

types are limited to a set of fundamental data types and two extended types specific to this

type system. The full list of data types include:

Figure 6.2 Class details of the DSO Object Model
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Type Description

Uint8/16/32/64 Unsigned integer types of fixed bit length 8, 16, 32, and 64

respectively.

Int8/16/32/64 Signed integer types of fixed bit length 8, 16, 32, and 64

respectively.

Float A value that can be stored in a standard C float type.

Double A value that can be stored in a standard C double type.

String A string of arbitrary length.

Array An array of properties.

Value An embedded property list value.

Ref A reference to another DSO entity.

The details of the the properties held by a PropertyList are defined by the the PROP-

ERTYLISTTYPE. This type defines the properties to allocate for a new PropertyList, their

associated types, and what names to use to refer to the property within the list. The Prop-

ertyListType corresponds to a class type in an object oriented language and as such, this is the

point in the object model where users can introduce new types to extend the system. A user

can define a new type in DSO by creating a PropertyListType with a unique type id and a list

of property types to use when allocating PropertyLists of that type.

The next level of grouping in the DSO object model is the ENTITY. An Entity provide a

holder for multiple related PropertyLists. For example a ball in a virtual environment may

have a PropertyList that defines its physical position as well as one that holds information

about its color. Each of these is an independent PropertyList, but they are held together in

a single Entity that defines the full state of the ball. Entities can wrap any number of Prop-

ertyLists of differing types. Users may look up a specific PropertyList held in an entity by

using the type id of the desired PropertyList.

Because all objects in the system must be distributed and tracked, there is a single point of

management for all DSO objects. This point of entry is the object pool. The object pool holds
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all of the Entities in the system. The contained entities each have a unique id that can be used

to look up the entity. When a new entity is created it is automatically added to the Pool.

6.1.1.1 Type Management

One of the goals for DSO was to make sure the type system was flexible enough to rep-

resent nearly any data structure while at the same time providing reflective interfaces and

generative tools to help support software developers. We went through several iterations of

the design before we were able to meet all these needs, but the final design provides these

capabilities and more.

As shown in Figure 6.1 on page 99 there is a PropertyListType that defines the structure

of a uniquely identified property list structure. This object holds a list of PropertyType ob-

jects that each fully define the details of a single property in the property list. These two

classes fully define the type system for the DSO system and at provide a reflective interface

for run-time introspection. Given any Entity or PropertyList at run-time, code can query the

PropertyListType or contained PropertyListTypes. This object provides a common interface

to get the type id, the name of the type, and a list of contained PropertyType objects. For

each of these objects the code can discover the name, type, and method of access for each

individual property.

This reflective interface is key to much of the code in DSO and at higher levels because it

allows us to write algorithms that will operate on any objects in the system even if their types

are not yet known. The serialization code in DSO uses this code to write and read binary and

text representations of Entities, PropertyLists, and Properties on disk and on a network. We

have created development tools that use these interfaces to allow the user to see and edit in-

memory data structures at run-time. One very powerful use of these interfaces was in creating

the python bindings for DSO. Python is a fully dynamic programming language. It allows for

run-time creation, modification, and removal of types, methods, variables, and every other

part of the run-time system. When we created the Python interface to DSO we took advantage

of these capabilities and combined them with the reflective interfaces of DSO to dynamically
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create run-time variables and types to interface with DSO. For example the Python interface

provides an type tree variable that automatically updates itself based upon all the known

types currently loaded into DSO. This dramatically simplifies the user experience with using

the Python interfaces and allows for the use of run-time types that are not known before

execution.

It can not be overstated how important the reflective interfaces are to the functionality of

DSO. Simply stated, without the reflective interfaces, DSO would not be able to function.

Although it is possible for a user to create a new data type (PropertyListType and asso-

ciated PropertyTypes) at run-time, doing so has some significant limitations. Any other user

that wants to use that type must replicate the type creation code by using the same unique

type id and property specifications. The code to create these types is complex, redundant,

and fairly fragile because it has to change if the underlying type system is upgraded or mod-

ified in any way. We realized very early in the process that it would be better to create a type

system that could be entirely data driven. As a result, all types in DSO can be specified using

XML.

All type specifications are stored using XML files that can be loaded, saved, and processed

at run-time. This allows the core object model to remain very small but still provide support

for very complex relationships and data structures at run-time. The structure of the XML

type files must conform to a predefined XML schema. This schema allows users to define

new property list types, contained properties, and to reference other types as both base types

and and embedded property types. An added benefit of using XML files and an XML schema

for type definition is that we can make use of the plethora of XML tools available for loading,

processing, and editing the data files.

Because we have all of the meta-information about the types available in XML files we

can also create tools to assist developers with these types. One of the areas we have used

this information is for generating C++ headers to assist with accessing the types at run-time.

When we started using the DSO system we quickly realized that there was a need to have

access to this meta-information in user code. For example to allocation PropertyList of a
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given type, the user needs to pass that types unique id to the system. Although it is possible

for the user to put this id in their code everywhere they need it, this is a pain for developers

and is error prone. The same is true when accessing properties of a property list. Although

the user can access them using their string names, this has a performance cost associated

with it because of the string comparisons and hashes that have to occur behind the scenes.

In many cases it would be more optimal to simply access the property based on an integer

index within the PropertyList. Once again, the user could use manually code this index in

any place they need it, but this requires them to know what each index is for each property. It

was obvious to us that these were areas that could use significant improvement. The solution

we arrived at was to create a code generation tool that uses the meta-information available in

the XML type files to generate C++ header files with symbols for each of the identifiers the

user may need at run-time. This way the user could use a symbolic name for the type ids,

type names, property indices, and property names they need to pass to methods at run-time.

The code generator would ensure that the correct values are used and the compiler will make

sure the user is using valid names at each location. This solution increased the ease of use

for the developer and dramatically decreased the number of errors related to using incorrect

values.

Although we have primarily focused on using type meta-information for code generation

tools there are other tools that could be created. It would also be possible to create other tools

to assist developers such as type dictionaries or even automated data mapping tools. This is

an area we see for future expansion and research.

6.1.2 Shared Memory

The shared memory system in DSO is the heart of the CVE. This system must distribute all

data changes in the system and ensure consistency of data to all users. Every other part of the

CVE architecture is built upon this foundation and relies upon the service it provides. Because

this system is so critical, we put significant effort into refining the design of the system to best

meet the needs of a CVE system. Where possible we have optimized the performance and
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Figure 6.3 DSO Architecture

usability to take into account the unique characteristics and usage patterns of a CVE system.

In this section we will describe the key components of the system and the insights found

while refining its architecture.

6.1.3 Core

The core of the shared memory architecture is to provide a object pool where users can

allocate new objects, update existing objects, and rely upon these changes being distributed

to other remote users in a consistent and timely manner. The goal is to make the interface

for supporting these use cases simple and consistent while hiding the complexities of the

implementation.

The architecture builds upon the base framework provided by the object model described

in the previous section. Figure 6.3 on page 104 shows the external and internal details of our

design and how it relates to the object model. The interface for a user consists of two key

abstractions: Entities and ObjectProxies. These abstractions provide all the capabilities that a

user or library needs to shared data throughout the system.

Entities As in the object model, Entities are the user accessible data objects. Distributed

Entities are wrapped by a POOLENTRY class and are held in an object pool under the control

of an ObjectManager.
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The PoolEntry wrapper extends the base abilities of an Entity with the capabilities needed

to support use for shared memory. In DSO we need a way to simultaneously allow reading

and writing of multiple buffered versions of an entity (see 6.1.3.4). PoolEntry encapsulates

this feature and provides the interfaces needed for using locks to synchronize the access to

the multiple buffers. When the system needs to serialize or deserialize the buffers it uses code

from PoolEntry to do this as well.

It is the ObjectManager’s responsibility to keep track of all objects in the CVE and control

all access to them. The ObjectManager makes use of a MessageDispatcher which controls

all message handling on the network. The MessageDispatcher is a realization of a Plexus

MessageHandler and thus uses a plexus network for all of its communication needs. The

MessageDispatcher in turn uses a MessageFactory for building messages from network pack-

ets and a SecurityManager for encrypting and verifying the messages it handles. This en-

tire object collaboration is responsible for maintaining consistency and coherency of the data

throughout the network.

One seemingly small feature of entities that has profound impacts is they are identified

using a UUID. By using a UUID we were able to solve the difficult problem of how to allow

multiple users on multiple nodes to simultaneously allocate new objects without requiring a

single central arbiter to provision ids. The use of a UUID simplifies this problem by allowing

entities to be uniquely identified and allocated throughout the entire shared network. The

user of any node can allocate a new object and be assured that the new object has a unique id

throughout the network.

6.1.3.1 Object Proxies

Because of management needed in the system, we found that we could not give the user

direct access to the entity and still maintain the ease of use required. Instead the design uses a

proxy pattern to wrap all access to entities behind an interface provided by the OBJECTPROXY

class. This ObjectProxy class is the user accessible interface to all data in DSO. Using an object

proxy a user can use pass through methods that allow them to allocate new data, lock/unlock
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objects, update existing data, and detect changes made by other users on remote nodes. All

of these capabilities are actually provided by other objects that make up the run-time collab-

oration of the system, but to the user there is a single interface that hides the details of the

specific implementation. From the user’s perspective they simply modify a property on one

node and then change shows up on all remote nodes. Behind the scene the proxy makes the

correct calls to the ObjectManager and PoolEntry to trigger the needed steps in distributing

and coordinating the data within the system.

6.1.3.2 Change Detection

When using a shared memory system it is often important to detect data changes and

respond to them. For example if a remote node changes the color of an object in the scene,

then the local view must detect this change and update the state information used to render

that object locally. The design of DSO supports change tracking at multiple levels. First, the

ObjectManager maintains a list of ids of all entities that have changed in the previous frame.

Second, the entities and property lists themselves maintain tracking information about which

contained items have changed. User code can follow this chain of change information to

detect exactly which pieces of state in the system have changed.

User code can monitor changes by either checking the list of changed entities each frame

or registering a callback with the ObjectManager to be called any time it detects a change to an

entity. In either of these methods the user can select whatever level of granularity they need

for the task at hand. If they only need to know that a property list has changed then they can

monitor at that level using the entity change tracking. If on the other hand they need to know

only if a specific sub property within a property list changes, then they can monitor at that

level instead. For example the system may say that the entity representing a ball has changed,

then the user code can look at that entity and programmatically determine which contained

property list has changed and further which property within the property list changed. We

have found that this system of change tracking allows the flexibility we need to support a

wide variety of update and monitoring methods.
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6.1.3.3 Locking

As with any distributed system we have to provide a way to coordinate access to a single

entity from multiple nodes. For example a user on two different nodes may both want to

change the position of an object in the scene. When this happens, we need a way to coordinate

the two nodes so the changes maintain data consistency (both temporally and absolute). In

DSO we have chosen to solve this by providing a token based lock for every entity.

At all times there is one node in the system that holds the token for a given entity. When-

ever a node wants to make changes to an entity it must request this token before it can begin

making changes. As part of this token exchange we ensure that the receiver has the most

recent version of the entity’s data. Updates to state are only allowed from the node with the

token. If another node attempts to send an update then that update is ignored. When a node

releases the lock, then it automatically sends the token to any other nodes that are waiting for

it. If there are no other nodes waiting, then the node keeps the lock until it receives a new

request.

At first we thought this method may be a little too brute force to provide the interactivity

we need, but it has proven to work well in practice. It often ends up that a single node makes

most of the updates to an entity and in this case that node usually has the token for that node.

This can be seen as an extension of the principle of locality to distributed systems. A node that

references a given entity often references it again in the near future. Because their is a token

per entity we are able to take advantage of this locality to increase the overall performance of

the system.

One additional capability we would like to add in the future is for a node without the

token to send an update request to the node with the token. If the update it acceptable, then

the token holder could modify their copy of the entity and send out the update. We believe

that this would further decrease latency in the system and prevent some forms of trashing

that can occur if two or more nodes are both attempting to sequentially modify an entity.
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6.1.3.4 Buffering

While designing this architecture we encountered several interesting insights that allowed

us to tailor the architecture and implementation to the needs of a CVE. One of the first things

we noted is that we could use data buffering to take advantage of the fact that CVE software if

frame-based. When a user changes data in the system they do not need or want it to show up

as a change until the next time through the frame loop. This means that there is an inherent

lag between the time a change takes place and the time that it needs to show up. We can use

this lag to our advantage to mask the network latency in the system. To do this we added

multi-buffering to all entities. When the user modifies an entity they are modifying one copy

of the entity and when they read data from an entity they are using another copy of the entity.

This allows us to asynchronously receive updates from other nodes and send updates out to

other nodes mid-frame. As described above, this buffering is hidden from the user through

the use of the PoolEntry and ObjectProxy classes.

All entities maintain three buffered copies of themselves:

Stable: This buffer holds the version of the data that is stable throughout the frame and rep-

resents the current distributed state.

Working: The buffer that holds any modifications made locally or modifications read from

remote nodes.

Working_Copy: This buffer is a copy of the most recent consistent snapshot of the Working

buffer. It is used to provide a performance optimization to make sure that we can always

grab a copy of the most recent completed updates and move them into the stable buffer.

To ensure that only one process is writing to a buffer at a time we use locking on the buffers.

This locking extends the token based locking described above and manages all access to the

entity buffers. The process of locking the buffer selects which buffer the application will read

and write from when it accesses the entity. When the application unlocks the buffer, the

system can then look for changes and if there are any, it can begin to process them by sending

the updates to other nodes and locally marking the changes for the change detection system.
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This same locking method provides a simple solution to allowing multiple local threads

to access the entities. The design says that in order to write to an entity the local thread must

hold the lock for that entity. Any writes to an entity without the lock held are considered

invalid. We solve the problem of multiple concurrent threads by making the locking thread

acquire a shared mutex. Only one thread can hold the mutex at a time, so this serializes all

access from multiple local threads.

6.1.4 Dispatcher

The message dispatcher forms the backbone of the DSO system. It has the responsibility of

processing messages from remote nodes and sending message on behalf of the local system.

The methods within the MessageDispatcher implement all the distributed algorithms in the

system.

6.1.5 Security

In addition to the to primary requirements of a object model and a shared memory system,

a deployed system needs to provide support for security. Although a detailed treatment of

security is outside the scope of this work, we have provided an initial security subsystem that

could form the basis of future work.

The security model provided by this subsystem is based on the following observations:

• We need to ensure that only objects that are authorized to change an entity are allowed

to do so.

• We need to ensure the authenticity of any notification of a data change.

• We need to ensure messages passed through the peer-to-peer system can not be inter-

cepted and modified for later replayed.

• More generally, we need to guarantee that messages in the peer-to-peer system are au-

thentically coming from their identified source.
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For the purposes of this work we choose to implement a rather simplistic security system

based on a public key infrastructure (PKI) using the Crypto++ library1. This system is based

on the idea that each user will have a unique login to the system and this login will have an

associated public-key/private-key pair. Further given the user id, any node in the system

can easily find the associated public key. The PKI pair is used throughout the system to sign

and encrypt messages and data packets. To simplify the system, we use the user’s public

key as their user id within the system. Because of this, we need a key with a short length

because the key will be part of most messages sent by the system. We found that elliptic curve

cryptography provides a good balance between security and key length [Mil85, Kob87]. For

our current system we choose a key length of 112 bits. For purposes of comparison, this key

length provides approximately the same security level as a DSA/RSA key with a length of

2048 bits [Sta00].

All security within the system is handled at the message level by signing every message

sent by a given node. This allows other nodes to verify that the data did in fact come from

the source node. When a message is received by a node, the signature is checked and if

it is invalid, the message is immediately dropped from the system. The system prevents

unauthorized data changes because the token handling in DSO only allows updates to come

from authorized nodes. If the data change comes from an un-authorized sources, then the

update is ignores. Replay is prevented by a sequential counter that is an inherent part of the

existing routing algorithms. If an old message is sent on the network it will not be routed

within the network.

We realize that the current security subsystem is not exhaustive and needs further refine-

ment. It has served our needs but it needs much additional work. In future work we would

recommend re-examining the security subsystem. In particular we need to find a better solu-

tions to managing the user id and PKI system. We believe future work could draw inspiration

from efforts such as OpenID that create distributed user id infrastructures [ope].

1http://www.cryptopp.com/
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6.2 Discussion

Because all data in the CVE is based on using the distributed objects of DSO, it was critical

to get the design of this system right. A bad design decision here would have a ripple effect

on the rest of the system that would at best make higher level designs awkward and at worst

make the system entirely unstable and unworkable. During the design and implementation

phases of DSO we encountered many things that went well and a few things that did go as

well.

One area that did not go well was the development and debugging of the distributed algo-

rithms. Building working distributed object systems is hard. What seems straight forward on

paper is very difficult to implement due to all the corner cases and the inherent complexities

of distributed software systems. Debugging DSO ended up being a significant undertaking.

During the initial design process we decided that the only way to really ensure quality code

would be to use extensive unit testing. These test worked well, but we ran into problems

where the test suite could not fully replicate all the issues we would run into with a fully

deployed system. In the end we had to re-write the unit test harness several times before we

finally found a setup that worked reasonably well and showing bugs and oversights in the

DSO back-end.

What we finally settled on was a unit test framework that created multiple separate pro-

cesses. Each process executed in it’s own memory space with it’s own copy of the DSO sys-

tem. On start-up each process received a unique identifier that allowed it to select the test

code path to execute. We also provided basic inter-process synchronization primitives using

the underlying plexus network. This allowed us to write code that would for example stop at

a barrier waiting for all processes. Although this setup was more complex then our original

test suites, we were able to provide APIs and macros that still allow the tests to be written in

a straightforward way.

An area that went very well was the design of the interface. It is possible to get a great

deal of capabilities with very simple rules and requirements. We purposely create a non-

distributed version of the property list code first so we could explore what a minimal interface
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would look like. only after we whittled this interface down to a bare minimum did we begin

to morph it into a distribute object system. This worked well because it made us focus very

early on the developer experience and gain an understanding of what exactly the API should

provide.

Because the external user interface is entirely captured in the Entity and ObjectProxy

classes, the implementation details are completely encapsulated and separated from the users.

This is a key advantage of this architecture because it provides a great deal of flexibility in im-

plementation. As long as the Entity and ObjectProxy behave as expected we can vary, refine,

and optimize the implementation as needed. When we implemented this design we took full

advantage of this fact by initially creating a brute force implementation that worked and then

later refactoring it to take advantage of further optimizations and refinements.

During development we investigated several alternative designs before we arrived at our

final system. One interesting alternative we looked into was a to base the system on the

concept of tuplespaces [Gel85]. In the end we opted for a more direct approach that feels

more like standard object access. It would be interesting though to see if there was a way to

generalize this using tuplespace concepts to create something with more mathematical rigor.

The final outcome of this work was a working shared object system that satisfied all of

our original requirements. It could be improved upon but it provides what we need for the

higher layers of the system.
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7 World Model

While Plexus and DSO provide a way to communicate between nodes and share data

within a distributed application, they are still very low-level. From our previous work we

know that we need something higher-level to hide these low-level details from developers

and instead let them focus on creating engaging and meaningful CVEs.

One of the goals of this research is to design a software architecture that can provide this

higher level representation in a way that allows for distributed composition of the result-

ing CVE. We call the layer that provides this representation Terra. Terra provides a common

world model that allows for the aggregation of code, behavior, and data into one single shared

structure that is user extensible. The world model forms the backbone of the shared environ-

ment. Terra manages this model and uses DSO and in turn Plexus to handle the low-level

details of the system.

We need Terra because it allows us to bring together the code, behavior, and data into

one single structure. When a user wants to add behavior to the system they simply add it to

this structure. When state changes in an entity, it is made in this shared structure and then

all the remote nodes see the update. By capturing the entire world in a single structure that

represents both code and state we provide a relatively simple conceptual model that allows

for a great deal of flexibility in development.

The unified world model allows developers and users to focus on using the shared vir-

tual world at a higher level. Instead of thinking about network messages, data updates, and

distributed algorithms, they can focus on the behavior code and entity data. The advantages

of this separation can not be over emphasized as it is the key to raising the bar and allowing

developers to create new systems without worrying about the complexities of the underlying
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details.

Because the world model is shared across the entire set of collaborating nodes, it allows

for world composition. Any user on any node can add entities and behavior to the scene. In

turn, the code for this behavior can be running on any node in the system. There is no need to

have a single centralized system or to restrict the extensibility of the system. This puts every

user on the same footing and allows for complete freedom in extending the world.

Another benefit of Terra is that it provides a central point of control for distributed re-

sources. All resources in Terra are represented by unique identifiers. Any node in a CVE can

use one of these identifiers to request a copy of the resource and Terra will automatically find

a copy of that resource and bring it local to the node for use. This can be used for example

to propagate code across the system, find data files needed for a scene, or load any other re-

sources that is needed in the system. The developer does not have to worry about manually

downloading data or sharing it with other users. They only add the resource to their local

system and rely upon Terra to distribute the data where it is needed when it is needed.

In many previous systems, each CVE required a new application executable because all

the code for behavior and interaction was custom to the application. This made deployment

and sharing of virtual world difficult because everyone had to have the same executable ver-

sion. Terra does not suffer from this issue because the virtual world is fully specified in the

world model. We only need to write a single viewer that knows how to connect to and in-

teract with the unified world model. This viewer can be reused for any world that has been

created. There is no requirement for a custom piece of software for each virtual world. This

also means that people could create other viewers that could all interact through this single

virtual world representation.

This is similar to how Web browsers have revolutionized the dissemination of documents

and deployment of browser-based applications on the Internet. A developer can load a doc-

ument or application on a web-server and rely upon the fact that existing web browsers will

be able to process and display that content. This allows for simultaneous deployment of data

and applications to millions of users without requiring them to add anything to their systems.



www.manaraa.com

115

Figure 7.1 Unified world model overview

Terra gives developers of CVEs a great deal of power but behind this layer there is a great

deal of complexity. The remainder of this chapter provides an overview of the design of Terra

followed by a discussion of how the system has worked in practice.

7.1 Design

The design of Terra can be broken up into three major areas: world model, system man-

agers, and the viewers. We will briefly describe each of these high-level systems and then fol-

low with a detailed discussion of some of the more interesting and involved sub-components

of the system.

7.1.1 World Model

The world manager is the core data structure for defining a world in the Terra system. As

shown in Figure 7.1 on page 115, the world model is comprised of two major components:

nodes and codelets. Nodes represent objects or spatial areas in the virtual world and the

data associated with those objects. Codelets are reusable code components that define the

behaviors to attach to a given node.

Nodes are realized using a DSO entity that holds a list of node children, a list of attached

codelets, and state data for the object represented by the node. Each node can have any
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number of other nodes as children but a node can only have one parent. This parent-child

relationship defines a directed acyclic graph structure that forms the basis of the relationship

of objects within the system and give structure to the virtual world. The class relationships

that make up the world model are shown in Figure 7.2 on page 117.

Because nodes are DSO entities, they can use property lists to store any information that

needs to be associated with the underlying object. For example if a node represents a car in

the virtual world we could associate a property list with the car’s color, another one with the

car’s position, and still another with information about the car’s current controls. By using

entities as the underlying representation, we allow the user the flexibility to add as much or

as little details as is needed for the codelets and other components of the system to represent

and interact with that node.

Every Node store a list of associated codelets. Each entry in the codelet list contains two

items: a codelet type id and a codelet execution area. The type id specifies the codelet type

to look up and instantiate. One way to think of the type is similar to a class type in an object

oriented language and then the instantiated codelet a similar to an object. The second piece

of information, the execution area, tells the run-time system how to execute the codelet in the

distributed system. The codelet could be set to execute on all peers, only on the peer that

owns the node, or only on the peers that don’t own the node. We will discuss codelets and

their execution in more detail in the sections below.

Each codelet can implement any type of unique behavior or interactivity needed by a

node. Because codelets are uniquely instantiated for each Node, a single codelet type can be

used by multiple nodes in the world model. By reusing and combining codelets, a Node can

exhibit very complex behavior without having to create any new codelet types.

7.1.2 System Architecture

The core architecture of Terra is show in Figure 7.3 on page 118. The system structure is

based on the ideas of the micro-kernel and mediator design patterns [BMR+96]. The system
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Figure 7.2 Node and codelet relationship in world model

controller is a singleton that acts as the central supervisor for the system. It holds the refer-

ences to every other component in the system and is responsible for initializing, coordinating,

and managing all components and sub-systems. The system controller must control the tim-

ing of all the managers in the system to ensure they remain consistent during execution. It

keeps track of the user that is logged in and updates the facets that are monitoring the system.

7.1.2.1 SystemController

The system controller bootstraps the system upon start up. First it loads any configuration

options that have been given to the system. It holds these options and provides them to later

stages of start up and other components in the system. Next the system controller connects to

Plexus and DSO to make sure the back-end networking and data sharing are setup correctly.

After the networking has been established it can them begin to instantiate and initialize each

of the managers in the system in turn. Provided that there are no errors loading the managers,

the system controller checks to see if it has been given an initial world configuration. If it has,

it triggers the asynchronous loading of the world as the final step in initialization.

Once the system has been initialized it enters a stable frame update state. The SystemCon-

troller::update() method is called once per frame to update the system. Internally this method

coordinates the other components by calling each of them in sequence to update their state.
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Figure 7.3 Core architecture of Terra

The system controller ensures that each component is updated only at the correct time in the

update loop and that each component can rely upon any dependent components being up-

dated as needed. A similar process takes place when the SystemController shuts down. It first

makes sure the system is in a consistent state and logs out the user from the virtual world.

Then it proceeds to shutdown each of the managers in turn and finally closes all connections

related to the SystemController.

The SystemController interface includes a set of central interface for coordinating the log-

ging in and out of a user to the system as well as the creating and loading of virtual worlds.

In the case of user management, these methods communicate with the DSO subsystem and

manage the state of the User object in the system. Loading and saving is handled by passing

through to directly to the WorldManager.

7.1.2.2 WorldManager and WorldBuilder

The WorldManager is in charge of holding and managing the world model. It keeps a

reference to the local copy of the world model, provides the central interface for creation and

extension of the world, and allows for loading of new worlds. Because the world model is
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based on a directed acyclic graph, there is always one “root” node for the entire world. Once

we have a reference to this node we can use it to find all other nodes in the system. In practice,

when we refer to the id of a world model we are actually referring to the id of this root node.

The WorldManager is the place in the Terra system where we hold the base reference to this

root node. Any time the rest of the system needs to refer to the world as a whole, it must ask

the WorldManager for this node and start from there.

Although the WorldManager is in charge of the world model, it is not the only compo-

nent of the system that deals with the model. There is a great deal of complexity involved in

world construction that is better managed using a separate builder pattern [GHJV95] to keep

it encapsulated and separate from the other responsibilities of world management. The com-

ponent that coordinates and manages the construction the world model is the WorldBuilder.

It contains all the code needed to manage the complexity involved in the asynchronous cre-

ation, discover, and monitoring of the world model.

For example, at any time during execution a local node in the world model may receive

a node update referencing a new nodes in the model. The WorldBuilder monitors these

changes. When a change is detected it spawns off asynchronous requests to find these new

nodes. When those responses are received, the WorldBuilder integrates the new nodes into

the current WorldModel. First it makes sure that the nodes do not conflict with anything lo-

cally, then it instantiates a new Node object for the local representation and initializes it with

the data from the Node’s entity. These changes in turn may contain further changes thus the

process can continue recursively until all changes have been followed and the entire world

model has been brought into a consistent state locally. This entire process has to proceed

asynchronously in response to network responses and must be able to detect and recover

from failures. By keeping all of this routines to implement this behavior in one location we

attempt to minimize the complexity as much as possible.

When a user needs to create a new Node in the system, they need to coordinate this with

the WorldManager and thus in turn with the WorldBuilder so it can run these discovery rou-

tines on the new data.
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The WorldManager can load a world in one of two ways; it can be loaded by connecting to

a remote node or it can be loaded by reading in a local serialized copy of a world that has been

previously saved by the WorldManager. In either case, the WorldManager starts the process

but relies upon the algorithms and asynchronous behavior of the WorldBuilder to complete

the process.

To load a world by connecting to a remote node, we only need to give the WorldManager

the id of the root node of the world model. From this id, the WorldManager can spawn a find

request to find this node in the virtual world. Once the node is found, then it can use the

WorldBuilder to recursively load the rest of the virtual world by triggering the discovery of

other nodes rooted at that point much as it would for any new node in the world.

When loading a world from a serialized version, the loading process is slightly more com-

plex. First, the file being loaded must have been previously saved using the WorldManager.

It can save a world by serializing every entity used to represent that world. This can entail

a large number of interconnected nodes, so the WorldBuilder contains a crawling algorithm

that can recurse through a web of entities and build a list of all the entities being referenced.

Once this list if built, the system can then save the world by saving all of the entities to a file

and storing the id of the root of the virtual world. The entities are saved by serializing them

using the generic methods provided by the DSO system for storing entities persistently.

The loading process is very similar to the saving process. The WorldManager first tells

the WorldBuilder about the world file and it then loads the data for each serialized entity into

an internal cache. This cache maps entity id’s to the full data for the entity as it was found

in the loaded file. Once the cache loading is complete, the WorldBuilder then looks up the

id of the root node for the world and uses this to trigger a world connection much as it does

for the standard case. The difference comes in when we fail to find a node on the network.

In the standard case, a failure is resolved by leaving a null reference in the world model. But

when loading from disk we can handle failures by looking for that node in the cache. If a

node is found in the cache then we instantiate a new node using this data and connect it to

the existing nodes in the system. This method of loading allows us to use the same code for
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both cases and provides flexibility in the case where some parts of the world may be loaded

from disk while others are loaded from the network.

7.1.2.3 RuntimeManager and Codelets

Terra uses a component oriented architecture [OCBS99, Szy98, SGM02]for defining the

code and behavior in a CVE. The components in the system are called codelets. Each codelet

encapsulates a single piece of code that defines a single behavior or algorithms. Codelets can

be reused and multiple codelets can be associated with a single node. The aggregate behavior

of all the codelets for a node define the behavior of that node in the system. This allows for

composability of the codelets to create complex behavior from simple building blocks.

The second part of the component architecture is the RuntimeManager. The RuntimeM-

anager is responsible for loading and managing the codelets along with the hosting environ-

ments used for those codelets. It uses hosting environments to load, initialize, and control the

various interpreters or run-times that may be needed. For example there is a python hosting

environment that loads a python interpreter and manages the loading of python codelets into

the interpreter.

The RuntimeManager monitors the world model and recognizes when there are changes

to the code in the system. For example when a node adds a new codelets, it is the Runtime-

Manager that recognizes the addition, finds the codelet resource needed, instantiates a new

instance, and connects the codelet to the node.

7.1.2.4 ResourceRepository

The resource repository is in charge of all resource management in the system. It man-

ages the local resource files and communicates with remote nodes to find and retrieve new

resources. Terra uses it to find data files that are associated with the world model and tell the

systems using it where it is stored so they can load the files.

Terra’s resource system is fairly simplistic at it’s core. All resources are identified using

GUIDs that map to a data file. Terra does not store any information about the type of data
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contained in the file or anything about it’s format. The files are stored on the local disk in a

“resource repository” directory.

Users can add resources to the repository by calling the ResourceRepository with a new

resource id and the name of the file for the resource. The system then copies that file to the

repository directory, adds the id and reference to the resource map, and starts to serve that

resource to any remote repositories that ask for it.

To look up a resource, the user must pass in a resource id. If the resource is already

available locally, then the system returns a reference to the file on the local file system. The

user can then process this file as it would any other file on the file system.

If the resource was not available locally, then the system will attempt to find it in other

remote repositories. The search is done using the same Plexus connection that is used for all

other data sharing. When a remote node receives the query it checks if it has the requested

resource and if it does, it responds directly to the originating node. Upon receipt of a suc-

cessful find from a remote node, the local node establishes an HTTP connection to the remote

node and begins to download the resource. When the download is complete, the file is moved

to the repository and an entry is added to the resource map. The user can then retrieve the

resource and load the file as normal.

Because of the way the ResourceManager works, there is an absolute requirement of

unique identifiers. If the same id is used on multiple nodes for different resources, the be-

havior of the system in undefined. One interesting implication of this requirement is that

when a user wants to upload a new version of an existing resource, they actually have to

create an entirely new resource with a new id and change all references to the old resource to

point at the new resource. This is needed in order to provide a guarantee that all nodes have

the exact resource files they think they should.

7.1.2.5 User

The User object is the representation of the local user in the virtual world. It controls the

entity representing the local user in the world model and thus completely controls the virtual
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embodiment of the user within the virtual world. As the user moves through the scene and

interacts with objects in the environment we update the User object so both the remote viewer

and the local viewer maintain a consistent description of the users state. One piece of state

held in the User object is their current location in the virtual world. As the user manipulates

the local viewer application this causes the location information in the User object to change.

This change is then used to immediately update the local viewer and is used to update the

state information for the local user in the world model.

Normally a remote user is represented using an avatar. There is one avatar per remote

user and it is mapped onto the information in the entity controlled by the remote User object.

The entity holds not only the location of the user, but also additional useful information such

as their view direction, where they are pointing, and anything else needed to update their

avatar state to be viewed remotely.

It is important to communicate this state information because an accurate remote repre-

sentation is key to a productive and useful collaborative experience. We do not have a “real”

view of the remote user, but by modeling their avatar as closely as possible to the real-world

behavior we are able to translate a great deal of non-verbal communication keys that can be

very important to human interaction. Knowing something as simple as knowing the direc-

tion that the user is looking or what they are pointing at in the scene is very important for

collaboration. For example in a collaborative design review scenario multiple users come to-

gether in a shared space to review and discuss prospective designs that are represented by

objects in the virtual scene. As the users talk about the objects they frequently say things such

as “what is the problem here” or “look at this”. Without knowing where they are looking or

pointing, it is nearly impossible to have a constructive design review because nearly all of the

interpersonal communication would need to be spent describing what aspects of the scene

they are discussing.

When the local user is represented remotely as an avatar, the system uses a standard model

file to represent the user. The model file to use must be a resource in the system. The exact

resource used is specified by setting the user model property of the entity associated with the
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User. This tells the remote node what avatar to use for showing the user and allows user’s

to customize their appearance. This becomes more important as more user enter the system

and the avatar is used to recognize the remote user. For example if there are eight people in a

collaboration and they each use the default user avatar it is very difficult to visually “find” the

person that you want to talk with in the environment. Alternatively if each user specifies a

different model and they use that model ever time they collaborate, then people can recognize

each other through their avatars. Once again, this is a simple capability but it has a dramatic

impact on the level of engagement and collaboration in the system.

The User object manages the authentication of the local user to the system. These capabil-

ities are provided by using the SecurityManager from DSO. To login to the system, the user

must specify their name and their key information. Terra then uses this to connect to DSO

and begin exchanging data. We anticipate that this portion of the system will be extended a

great deal as part of future work to provide for better user management and more extensive

support for authentication and security.

7.1.2.6 Facets

When using a world model and presenting it to the user, there is often a need to create

new representations derived from the world model. For example, we may need a custom

representation to display the world in a graphical 3D environment, to interface with a physics

simulation, or to present the model for editing in a desktop GUI. In all these cases we have a

new data structure that reflects a different view of the world model using a perspective that

is most appropriate for the final use. We describe these derived perspectives as Facets. It is

through facets that the user and other parts of the system are able to perceive and interact

with the world model.

All facets share a few common design characteristics. Because they are providing a dif-

ferent way to represent the world model, they must monitor the world model and reflect all

changes that occur. The system design helps support this by calling an update method on all

facets once per frame. The implementation of this update method can then use the change
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monitoring support from DSO and Terra to continually make refinements to the facet’s data

structures based upon the changes observed. For example if a node representing a ball in the

world has it’s color property changes, then any facets that are presenting data visually must

see this change and modify the color being rendered.

Facets are often used as bridges to different subsystems that need to connect to the world

model. In this way they can be looked at as a realization of a facade design pattern [GHJV95].

They present the world in a way that allows other parts of the system to see what they need

and to interact with the world without having to know all the details of the full world model.

For example, a physics simulation may want to see all objects in the world as independent

entities with Newtonian properties. This is not how the world model represents the objects

but by using a facet we can provide a perspective that presents the world in exactly this way.

By using facets we are simultaneously make it easier for extensions to be added to the system

and providing explicit points of coordination in the system. We will discuss facets in further

details later in this chapter.

Current Facets In the current system we have designed and implemented several facets.

The first facet is used for a desktop UI to edit the world model. This facet allows the user to

explore the entire tree structure of the world model. They can see how the nodes relate to

their children. When the user selects a node, they can see all the properties of that node and

all the data contained in the entity and associated property lists for the node. In addition to

seeing this data, the user can also edit the world model. They can add, remove, and modify

nodes, property lists, and codelets.

Although presenting the world model in this way can be a bit overwhelming, it gives the

user a great deal of power. Through this interface they can browse existing worlds, create

new worlds, and debug developing worlds. This facet provides so much flexibility that it

currently serves as the primary development platform for all of the worlds we have created.

The second facet in the current system is used for visual representation and is called the

OpenSGFacet. It is named this because it provides the link connecting the world model to the

OpenSG scenegraph [Rei02] that we use to present the world in 3D environments. This facet
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is responsible for turning the world model and all it’s state into a scenegraph representation

that we can render for the user. This entails everything from loading 3D models to rendering

the user’s avatar in the scene.

7.1.3 Viewer

The Terra libraries provide a great deal of capabilities, but we still need an interface to

bring these capabilities together and present them to the user in a useful way. This is where

the viewer application comes into the picture. We could write any number of viewers on top

of Terra and each could provide different views into the system, but we have only created two

for now. Both viewers are named lglass, but each is a variant that is targeted for a different

presentation medium. One is meant for the standard desktop interface and the other is meant

for immersive VR systems.

The viewers are based upon a common core and shared much of the same code-base. The

common core is based on Plexus, DSO, Terra, and the OpenSGFacet. It implements a common

metaphor of moving a virtual user through the virtual world represented by the current world

model. As the user moves through the world their current location information is passed into

the world model using the User object that represents them in the virtual world. The code

used for presenting the visuals of this 3D environment are common to both viewers and is

nearly entirely captured in the facets used by the viewer. The place where the viewers differ

is in how they present the user interface and in how they allow the user to interact with the

virtual world.

The desktop viewer presents a classic desktop-style interface and interaction paradigm.

It uses the PyQt windowing system 1 to provide a view into the world model, a simple in-

teraction model, and some basic scene editing capabilities. The interaction model consists of

using the mouse to select, drag, and control objects in the scene. This method used will be

discussed in more detail later in this chapter.

The immersive viewer provides an interface using the VR Juggler library and can be used

1http://www.riverbankcomputing.co.uk/pyqt/
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across clusters of machines for large VR systems. Like the desktop viewer, it presents a view

of the world model and allows the user interact with the scene. Where it differs is in how

the interaction is handled. In the VR system all interaction is done using a virtual wand and

natural grabbing and selection methods.

7.1.3.1 EventManager

The EventManager is the central point in the system for all interaction or other events that

influence the evaluation of the code in the world model. The design of the EventManager is

based on an observer pattern.

Any object in the system can register to monitor events in the system. All events are

identified by two pieces of information: a node id and a signal name. The node id is a GUID

that corresponds to the id of a node in the world model. The signal name is a user defined

string. Any name may be used and new system components may introduce events that are

specific to their functionality. This provides a point of extension that allows for any number

of signal types to be used without ever having to modify or extend the EventManager itself.

Users register to observe an event by calling the EventManager with the id of the node to

monitor, the name of the signal to monitor, and a callback. When a system component needs

to emit a signal they call the EventManager with the id of the affected node, the name of the

signal being emitted, and a list of arguments to pass to the handlers. The EventManager then

looks up all observing callbacks and calls them with the arguments adapted as needed for the

callables.

The EventManager also controls the timers in the system. A user can register a periodic

callback by adding a timer to the EventManager. The EventManager will then call the timer

and callback as needed. Arguments and connections are handle similarly to the method use

for the standard events.

The EventManager provides the benefit of flexibility and extensibility to the system. By

providing a standard way to communicate between components, we decrease the complexity

of each component. They do not have to re-invent a new observer system or find a new way to
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pass data to interested users. Instead they can use the common standard to meet their needs

and extend it as needed for all their communication. This has the added benefit that it allows

all components in the system to stay relatively decoupled from each other because they do not

have to call each other directly. Instead they can use the EventManager to communicate indi-

rectly by using known signal names to call any number of unknown observers. For example

a viewer application can monitor a user’s interaction and send a signal that they selected an

object in the scene. A codelet can pick up this signal and process it in anyway the see fit. This

entire process takes place without the viewer having to know anything about the interface

of the codelet and without any direct communication. Taken a step further, this process can

even be used to allow two dynamically loaded codelets, from different users, that have been

developed completely independently, to communicate with each other without ever seeing

each others code.

7.1.3.2 Interaction

We needed a way to capture the various interaction paradigms in a reusable way that

could be applied to many different codelets and could be mapped from various viewers. At

first we investigated allowing direct access to the various user interfaces provided by the

viewers. For example the code could look at mouse movements on the desktop and wand

movements in a virtual environment. It quickly became apparent that this would not scale

well. This paradigm results in a great deal of code in the codelets that is just used to decipher

what input devices are available and then to interpret them. We knew that this would not

work so we found another way.

What we ended up with was an event based systems that abstracted all virtual interaction

into a well-defined set of interaction events. This systems makes use of the capabilities pro-

vided by the EventManager to route and process events for each node in the world model.

In the case of interaction, the viewer application is responsible for translating user interaction

into interaction events for each node.

Currently the system supports the following interaction events:
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point, point_start, point_stop: These events are fired when the user points to an object in the

scene. This may be with a virtual wand or by hovering their mouse in desktop

mode.

touch, touch_start, touch_stop: These events are fired when the user brings their interaction

device into contact with the object in the virtual environment. For example in an

immersive environment this event is sent when the user’s wand intersects with

the virtual object.

move, grab_start, grab_stop: These events are fired when the user is attempting to grab and

possibly move an object in the scene.

Codelets respond to user interaction by registering their interest to these events on a given

node with the EventManager. For example if a codelet wanted to change the color of an

object when the user touched an object in the scene, it would register the “touch_start” and

“touch_stop” event for the node of interest with the EventManager. Then when the user

touched the node, the EventManager would call the event management code in the codelet

and the codelet could then change the color property of the object. This code would work in

both the desktop environment and the immersive environment.

Although we currently restrict the interaction to these three groups of interaction types,

we have found that they provide for the vast majority of needed interactions. This part of

the system could be extended in the future to support other interaction needs as they become

apparent.

7.2 Discussion

During the development of Terra we encountered many challenges. We tried many al-

ternatives before arriving at the system presented in the previous sections. Fortunately we

were able to find suitable methods to address each challenge. Some of the more interesting

challenges are discussed below.
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World Manager and Builder The sharing of responsibilities between he world man-

ager and world builder is currently a bit problematic. In the initial design, the idea was that

the WorldManager would own the world and that the WorldBuilder would be responsible

for helping to load and build the world. When it came to implementation, this simple split

became much more complex. In the current realization there are several work-arounds con-

tained within the WorldBuilder that allows it to build the world and callback into itself when

a new node is added. For example, asynchronous detection and building of new world nodes

and/or trees proved to be very complex to implement. The WorldBuilder has to know a sig-

nificant amount of information and effectively takes over the management of the world model

during several phases of construction. This relationship should receive more investigation in

the future to see if there is a more elegant way to handle the sharing of responsibilities.

Codelets We originally planned to base our codelet system off .Net components. The

common language run-time seemed to provide a very nice component architecture to support

this capability. This relied upon finding a way to link the CLR components to the Terra run-

time and as it ended up this proved to be very difficult and would have required extensive

additional work. Instead of pursuing this work we decided to use Python which already

has a very straight forward interface to C/C++ code. As it turns out, this choice was very

fortunate because it allowed us to take advantage of the dynamic capabilities of Python from

within the Terra system. In the future other people could revisit this choice and add support

for additional languages and run-times.

One area where we spent a good deal of thought was in whether to allow codelets to

interact with each other directly. In our original design we planned to keep all codelets com-

pletely independent and only allow cross-codelet communication by way of data updates to

the entities. This choice was made because we thought it would ensure that codelets were

completely encapsulated and reusable. When we began to implement various virtual worlds

though we realized that in some cases inter-codelet communication was very helpful and that

the overhead of doing this through property lists could be to great. We were still very hesitant

to allow direct communication though. Instead we began to experiment with using the Event-
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Manager to send events between various codelets. This provided a way to allow codelets to

call each other without directly exposing references or APIs for specific codelets. So far this

system has worked well and has provided for all the inter-codelet communication necessary.

In the future this decision could be revisited to see if there is any other way to allow codelets

to collaborate more directly.

Property Lists The Entity and PropertyList basis for Nodes provides a great deal of flex-

ibility, but this has to be tempered with the fact that Codelets need to know the data structure

to communicate. One slightly unexpected side-effect of this requirement is that the number of

PropertyList types remained fairly low for most CVEs. Through the course of developing vir-

tual worlds, the development of codelets that could work on multiple nodes not only drove

the requirements of the property list types, but it also drove towards a standardization of the

types. This was needed because many codelets needed to be written and it simply made sense

that they would want to use similar data structures. What we found worked very well was

to think of objects from the perspective of physical properties and then break these properties

down into groups of similar properties. Each group then because a single property list. For

example, position, size, and scale were grouped into one property list type that was used for

all objects that had a physical realization in the environment. If an object had editable material

properties, then another property list may be added that would describe the characteristics

such as color. As people continue to use this system, we anticipate that an entire taxonomy of

such property list types will be developed to provide standard ways for codelets to interact

and interpret the characteristics of objects.

Facets Implementing the idea of facets proved to be very problematic. The core issue is

that a facet is really a new data structure that reflects an existing data structure. Because of

this, the code must monitor changes in the source data structure (the world model) and then

make iterative changes to the local data structure. This may sound simple, but in practice it

can be very difficult to keep the data structures in sync. What we had to do for the facets we

have implemented is keep back references into the facet data structure so for example at any
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time we can find the portion of the data structure that corresponds to a given node.

Even more difficult then this though is that the data structure may reflect characteristics

from the properties in the node entity’s property lists. For example the OpenSGFacet has

a set of scene graph nodes for each node in the world model. If the world model has data

about transformations, then we have a scene graph transformation nodes, if there are material

properties, then we have a material node for the corresponding geometry, and so on. This can

lead to an ever increasing set of scene graph nodes to represent a single world model node.

As of yet we have not found a way to simplify this complexity.

Facets also prove difficult when we take into account that they may need to interact. For

example a physics facet may need to know the geometry of a scene in order to correctly

represent the objects for collision detection. This requires the physics facet to examine and

monitor not only the world model, but also the OpenSGFacet that contains the real geometry.

The current design does not address this flow of data and dependency between facets. Future

work is needed to find a way to manage these inter dependencies.

Resource Management The distribution of resources to a node is currently a bit sim-

plistic, but it seems to work well. We originally thought we could take advantage of parallel

streaming of resources from multiple connected users to increase the speed of resource down-

loads. We had hoped to build off of a system such as BitTorrent [Coh03]. Unfortunately we

found that not only did this make the system more complex, but upon further analysis it did

not appear that it would have a significant impact on performance. Most objects in the scene

are very small and the overhead of managing parallel downloads, distributed trackers, and

the increase in network traffic did not seem to warrant the extra complexity. Instead we de-

cided to use a simple HTTP download server local to each connected user. This keeps the

system very simple and still allows for parallel download of data by pulling one resource for

Node A and another resource for Node B. It may be worth re-examining this decision in the

future if resource download times become an issues.
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8 Conclusions and Future Work

In the previous chapters we have described a system architecture that can support a new

type of CVE creation and deployment. In sections 1.3 through 1.5 we laid out the research

problem to address along with the challenges and research issues this work would need to

answer. In this section we will describe how each of those issues have been addressed. We

follow this with a description of the outcomes of this research and a summary of future work

that we feel could further extend the state of the art in CVEs.

8.1 Challenges Addressed

As discussed in Section 1.3, there are many challenges faced by CVE software systems.

We set out to address several software related issues in this research. In this section we will

discuss how each of these issues relates to the our research.

• Lack of common model of the virtual world

This is the primary research challenge addressed by this work. Continuum and more

specifically Terra provides a single unified world model. It provides a common method

for representing all object data and application code within and between CVEs. This

model allows for reusability of code and resources across many different application

areas and viewers.

• Virtual worlds are not user extensible

The unified world model provided in Continuum empowers all users to contribute

equally to the CVEs created. It allows for full evolvable extension. Any user of the system

can extend the system with new object data and/or code in anyway they like. There is
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no central authority that controls the allowable content or that controls the simulation

that can be executed. Similar to the world wide web, users are fully in control and can

provide any content that they wish.

• Deployment is difficult

Because of the way the world model is used, Continuum makes deployment fully au-

tomatic. Deployment occurs as a side-effect to standard world model loading. When

a user connects to a virtual world using a viewer, the viewer finds the root node of

the relevant world model and then begins to traverse the world model from this point.

Initially, there is nothing beyond the base viewer and root node. As the viewer dis-

covers new nodes the content and code for these nodes are dynamically downloaded

and added to the local world representation. Everything that makes up the world is

downloaded on demand. When an update or change is made to a virtual world this is

automatically detected and the new state is picked up by all viewers. The entire process

of deployment is automatic and transparent to the user.

• Application development is burdensome

Continuum helps to alleviate some of the development burden by providing higher-

level abstractions that hide many of the low-level details that make developing CVEs

so complex. Developers do not need to worry about networking, sharing data, keeping

state synchronized, deploying applications, or distributing resources. That is all han-

dled by the Plexus, DSO, and Terra layers. Instead developers are free to focus on cre-

ating engaging content and interesting behaviors using the world model and Codelets.

Although this system is still not without complexity, it has proven to greatly simplify

the number of issues that developers have to contend with while creating CVEs. We

believe that development could be further simplified in the future through the creation

of better tools and development environments for interacting with and creation content

inside the world model.

• Limited number of users
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Continuum addresses the limits on the number of users by creating a system that allows

for user extension and a shared world model. The unified world model allows for CVEs

that are composed of contributions from large number of users. However it does not

solve the more general problem of network and system scalability. We feel that although

this is an important topic, it is outside the scope of this research. We are hopeful that

others will follow this research and find ways to use the ideas we have proposed in

combination with techniques such as multi-level area of interest models and dynamic

network groups to create systems that are more scalable.

8.2 Research Issues Handled

In addition to the general CVE challenges proposed, there were specific research issues

brought up in Section 1.5. We described how each of these issues interrelate with each other

and the challenges to CVEs. We will reexamine each of them here in the context of how the

design of Continuum addresses each issue.

• Unified World Model

As described in Chapter 7, the Terra sub-system provides a complete world model. It

holds object state information in DSO entities and behavior in Codelets. This system

provides the backbone for all CVEs built with Continuum.

• Data Distribution

Terra uses DSO for all data distribution. The DSO system allows developers to create

property list that hold the full state for a given aspect of an object. When an instance of

this property list is created and attached to a Node’s entity, DSO ensures that all object

state is distributed to all other users in the system. This includes keeping the data in

sync, controlling access rights, and distributing property list type information.

• Code Management

The RuntimeManager in Terra works in concert with the various HostingEnvironment

instances to control all issues related to code management (see Section 7.1.2). Code
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components are represented by Codelets that are loaded by the RuntimeManager. Each

Codelet is hosted by a HostingEnvironment that provides the environment and bind-

ings needed for whatever language or run-time is required by the given Codelet. The

system provides basic support for continuous execution using hooks that allow Codelets

to save and restore their state when a new version is found or the system must be

reloaded.

One area of code management that requires further work is that of code security. The

current hosting environments do not do much in the way of restricting execution or

looking for malicious code. This needs to be addressed before Continuum could be

widely deployed in unsecured environments.

• Resource Management

The ResourceManager in Terra is responsible for all resource management in the sys-

tem. As we have stated previously, we chose to implement a very simplistic model of

resource management that is based on unique ids for all resources and a simple find

and download pattern for acquiring a needed resource. This works well in practices

and addresses most of the requirements for resource management. Version manage-

ment is provided by use of unique ids. Any resource added to the system is a specific

version with a specific id. If a new version is needed, then the objects that reference the

resource reference the new id and that id takes precedence.

One weakness in the current system is that there is no form of authentication for the

resources. This is an area for further extension and we believe that this could be easily

addressed by using some type of signature system where by a resource id would be a

combination of a unique id and a hash to provide a level of confidence in authenticity.

• Space Sharing Rules

From the outset of this research we knew that one unique issue would be that of space

sharing rules. Because our system provides for distributed user extensibility, this intro-

duces issues of who has rights to spaces in the CVE and who can extend the CVE in a
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given area. The current system handles these issues through the use of access control

rights to node data. Because each node can only be edited and extended by a given set

of users, this restricts who has rights to given spaces in the system.

Because of the complexity of the core research into the world model, we have not put as

much focus on this area as we would have liked. That said, we have provided the basis

for some experimentation and we look forward to seeing how this part of the system

could be extended and refined in the future.

• Development Tools

We have said from the outset that we would like to provide better tools to developers

of CVEs. Currently, the primary development tool in Continuum is the desktop viewer.

This viewer allows developers to view and modify the world model at run-time. Devel-

opers can add new resources, edit node state information, introduce new codelets, and

refine existing codelets. The effects of these changes are able to be seen immediately in

the system. Through this work, we believe that we have made progress on this front

but there is still much work to be done.

8.3 Outcomes

The outcome we are most pleased with is that the system works and it has been deployed

in research and production settings. The design not only looks good on paper, but it can be

implemented and fielded for real work. This required more effort on our part but it was worth

it because it helped us refine our ideas and prove that they work for real CVEs.

8.3.1 Impact

As we described above, we have addressed all of the research issues and challenges that

we originally tackled. While we are proud of these accomplishments there are a few that are

worth further discussion because they provide the most impact in this research area.
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We have shown that this method of structuring a world has promise. It works and it can

be used. Before this effort we did not know if this idea had any merit. We have shown that

although centralized control of CVEs is the standard, it is not the only way to structure these

environments. This simple act of testing a new method of structuring a CVE may have the

most long lasting impact. It is our hope that this will serve as a catalyst for more research into

this area so future researchers can take this ideas and push them even further.

We have overcome many of the limits of centrally controlled server-based CVE systems.

Foremost, the system allows for collaborative creation, editing, and extension of CVEs; what

we call evolvable extension. Users can add to the virtual world as they see fit and the world

model will take care of merging all these changes into one coherent shared environment.

This frees users from the shackles of having a single central authority with a set of servers

controlling the entire system.

Deployment of these worlds is straight forward and works as part of the standard system.

Much like the world wide web, once you have a viewer application you can simply connect

to the world you want and everything needed for presenting the world will be downloaded

from that initial connection. This eliminates a significant problem of previous CVE efforts.

8.3.2 Limitations

We would be remiss to suggest that everything is fully solved. There are limits to our

current design and there are still many areas that need further research.

Development is still rather difficult. The use of scripting languages has made develop-

ment more approachable, but there need to be better tools for developing virtual worlds. We

would like to see capabilities added such as an integrated code editor, a codelet debugger,

and support for developer tracing of state changes and networking. It is our experience that

no matter how much developer support a system has, there can always be more added to

make the system better. We leave it to future CVE developers to find these limits and extend

the tools to suit their needs.

The inherent limits of networking are still an ever present hindrance to scalability. In
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a peer-to-peer system like Terra this is especially apparent because the simulation may be

widely distributed. The latency between nodes can cause users of simulations to lose their

suspension of disbelief. In centralized systems the simulation components are usually on a

local high-speed network that can help to reduce the network effects. By distributing the

simulation across all users of the system we have made the virtual world more extensible but

a side-effect of this is that network performance has more of an impact. This is a trade off that

we have not been able to overcome as of yet. We believe there are solutions to be found in the

way the Plexus network and thus the DSO communication is managed and routed.

A significant limit of the current system is the lack of a full security infrastructure. We

had hoped to design and test a full set of security policies for areas of the system such as user

authentication, object state communication, resource management, and code execution. In

the end we have plans on the drawing board but we did not have the resources to test and

refine the ideas through implementation. As far as we know there is no part of the system

that could not be secured with more time, and we think this would be a great project for a

student to pursue in the future.

Rather then looking at these limits as shortcomings in our research, we look at them as

opportunities for other researchers in the future. In the next section we will describe future

work that we think could be done to solve these issues and extend the system further.

8.4 Future research

One area that can always use further research is scalability. We have created a world

model that can be used by multiple users, but we have not addressed how to deal with the

issues of scalability as large numbers of users interact with this world model. There has been

much previous work in this area and I am sure it will continue to be an area of active research.

The networking algorithms in Plexus could be refined further. The current system is very

simplistic in it’s approach to balancing the network and reducing the number of communica-

tion links. We experimented with a few more advanced routing algorithms based on genetic

algorithms and other related techniques but we did not pursue these areas nearly far enough.
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As we pointed out in the previous section, we need to added a consistent security infras-

tructure to the entire system. We need a way to authenticate users, the data being exchanged,

and the resources being used. We believe that this system could be built upon existing best

practices.

We have only begun to scratch the surface of what is possible with Codelets. There is a

significant amount of work that is needed to investigate issues such as inter-Codelet com-

munication, user interaction, persistence, and long-term viability of applications. Once more

applications are written using a model such as this one, we believe that issues related to

Codelets and application development will be a fertile area for future projects.

As with all research projects, we have not reached the ultimate solution for any areas. As

such, every research area addressed in this project could still use further research. Our simple

hope is that we have provided a starting point that will plant the seed for future researchers

to follow this work and extend it with their own ideas.

8.5 Final thoughts

This research work has been simultaneously more difficult and more rewarding then orig-

inally planned. Because of the complexity of the problems addressed it has taken a significant

amount of effort to create the designs needed for the system and test them out in the real

world to make sure they work. This second step of realizing the design ideas with real work-

ing code has taken the greatest amount of time, but the effort has paid off in that it required us

to think through the issues more clearly. In some cases early ideas did not work out and we

had to revisit the designs, in other cases we were able to come up with new design ideas based

upon the feedback from implementing the system. We are very happy with the outcomes of

this work. We have learned a great deal and we believe we have extended the knowledge in

this area and provided a springboard for future research in this area.

Overall the design of Continuum has worked very well. It has allowed us to create com-

plex worlds out of simple components and data descriptions. The system has proven itself

in the real-world but there is still much work yet to be done. We do not consider this system
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to be complete, we consider it to be just complete enough. We are excited to be a part of this

field and we are very interested to see where the next line of researchers can take this effort.

We hope that in the near future there will be vast CVEs as available and extensible for users

as modern day websites our to their users.
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